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Preface

The 12th International Conference on Database Systems for Advanced Applications
(DASFAA), organized jointly by the Asian Institute of Technology, National
Electronics and Computer Technology Center and Sirindhorn International Institute of
Technology, sought to provide information to users and practitioners of database and
database systems on advanced applications.

The DASFAA conference series has already established itself and it continues to
attract, each year, participants from all over the world. In this context, it may be
recalled that the previous DASFAA conferences were successfully held in Seoul,
Korea (1989), Tokyo, Japan (1991), Daejeon, Korea (1993), Singapore (1995),
Melbourne, Australia (1997), Taiwan, ROC (1999), Hong Kong (2001), Kyoto, Japan
(2003), Jeju Island, Korea (2004), Beijing, China (2005) and Singapore (2006).
Thailand had the opportunity to host this prestigious and important international
conference and join the league.

This conference provides an international forum for academic exchanges and
technical discussions among researchers, developers and users of databases from
academia, business and industry. DASFAA focuses on research in database theory,
development of advanced DBMS technologies and their advanced applications. It also
promotes research and development activities in the field of databases among
participants and their institutions from Pacific Asia and the rest of the world .

This proceedings volume puts together 112 accepted papers from more than 18
countries in the areas of XML Databases, Mobile Databases, Query Language, Query
Optimization and Data Mining etc., of which 68 are full papers, 24 are short papers,
17 are posters and 3 are industrial track papers. The conference received 375
submissions and such a rigorous selections helped retain DASFAA's reputation as a
highly selective conference that publishes only quality research.

We are delighted to feature two invited talks from Guy M. Lohman, IBM Almaden
Research Center, and Masaru Kitsuregawa, University of Tokyo. DASFAA 2007
also featured an excellent tutorial program covering three tutorials related to Matching
Words and Pictures, Time Series Databases, XML Databases and Streams. In
addition, there were three demonstrations, panel sessions and two workshops.

The members of the DASFAA Organizing Committee worked extremely hard to
make this conference a success. The members of the Program Committee, consisting
of renowned data management experts, undertook the arduous task of reviewing all
the submitted papers and invested their valuable time and expertise, despite their
extremely tight schedules. We would like to thank all the reviewers who very
carefully reviewed the papers on time, the authors who submitted their papers and all
the participants.

We are grateful to Alfred Hofmann and the staff of Springer for their support in
publishing these proceedings.



VI Preface

The conference was sponsored by IBM, Thailand, the Database Society of Japan,
Korea Information Science Society, National Electronics and Computer Technology
Center and Software Industry Promotion Agency.

April 2007 Ramamohanarao Kotagiri
P. Radha Krishna

Mukesh Mohania

Ekawit Nantajeewarawat
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‘Socio Sense’ and ‘Cyber Infrastructure for
Information Explosion Era’: Projects in Japan

Masaru Kitsuregawa

University of Tokyo
kitsure@tkl.iis.u-tokyo.ac.jp

Some of the large projects in Japan where I am serving PI are introduced in this talk.

MEXT (Ministry of Education, Culture, Sports, Science and Technology) approved
new project named ‘Cyber Infrastructure for Information Explosion Era’ in 2005. The
year of 2005 was a preparation stage and we asked research proposals under this
program. Totally seventy four research teams were accepted. The project effectively
started on April 2006.This is the largest IT related project in the category of Grant-in-
Aid for Scientific Research on Priority Areas. Around 5 million dollars for 2006. The
project supposed to continue until FY2010. The amount of information created by
people, generated by sensors and computers is explosively increasing recent years.
Especially the growth ratio of web contents is very high. People do not ask questions
to the friends anymore if they want to know something but use search engine and
people are now really heavily dependent on the web. Knowledge workers are using a
lot of time just for ‘search’. The more the information be generated, the more we find
difficulty to locate appropriate information. In order to achieve higher quality search,
we are currently developing an open next generation search engine incorporating deep
NLP capabilities. By deep, we mean we put more machine power to web contents
analysis. In another words, we do not care about response time, since current 1 sec
response time is dependent on the advertisement based monetization scheme. We
believe we should provide service, which is more than ordinary search. In addition to
web, we do have yet another information explosion in the area so called e-science.
Through introduction of very powerful supercomputer and various kinds of advanced
sensor systems, science is now becoming very data intensive. We plan to build tools
for science discovery over the sea of data explosion. Another area would be health
care. A lot of patient health care records are now becoming to be digitally stored.
Monitoring the human activities with sensors and mining the archived HCR would be
typical data driven application.

Explosion of the information incurs several problems not just in search but also in
computer system management. A lot of information means a lot of applications,
which gives so much stresses against the system. Cost of maintaining the system is
now increasing more and more. Self monitoring the system activities also generate
huge amount of information. BAM is one typical higher level example. We are now
building large scale distributed cluster test bed over Japan, which is a shared platform
for next generation system software development.

Human interaction is also very important research issue. All the information
finally has to be absorbed by people. Highly functional human interaction capturing
room are being developed. Various kinds of sensors are prepared and eight video
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cameras capture the interaction process in synchronously from different angles.
Building the interaction corpus would be important for several modal analysis
researches.

Thus information explosion project covers almost all the computer science areas.
More than 200 researchers are now participating.

Socio-sense project will be also introduced. People are spending more time in the
cyber world in addition to in the real world. Most of the important events are
immediately reflected onto the cyber world, which means we can capture the
activities of the real world through the cyber world, whose information can be
crunched by information technology. Cyber world can be regarded as a SENSOR for
the real world. By viewing the evolution of cyber world, we can interpret various
interesting social activities. The system of socio sense is not a search engine but a
kind of tool to see the societal behavior. This is also supported by MEXT.

METT is going to start ‘Grand Information Voyage’ project from April 2007.

Several national projects on information explosion starts(ed) in Japan. We are
considering the possibilities of international collaboration.

Information explosion project:

http://itkaken.ex.nii.ac.jp/i-explosion/ctr.php/m/IndexEng/a/Index/
Consortium for Grand Information Voyage project:

http://www.jyouhoudaikoukai-consortium.jp/



Is (Your) Database Research Having Impact?
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Is your research having real impact? The ultimate test of the research done by this
community is how it impacts society. Perhaps the most important metric of this
impact is acceptance in the marketplace, i.e. incorporation into products that bring
value to the purchaser. Merely publishing papers and getting them referenced has no
intrinsic value unless the ideas therein are eventually used by someone. So let us ask
ourselves candidly — is (my) database research having (positive) impact? Concisely:
Are they buying my stuff? Have the “hot topics” of the past withstood the test of time
by actually being used in products that sold? If so, what characteristics were
instrumental in their success? And if not, why did something that got so many people
excited fail to gain traction with users? Perhaps more importantly, what can we learn
from our track record of the past in order to have better impact in the future? How
can we better serve our user community by solving their real problems, not the ones
we may imagine?

Let us first critique our historical track record as a community. Over the last thirty
years, a few major topics seem to have dominated the interest of the research
community in databases. Waves of “hot topics” appear to rise to predominance, in
terms of the number of papers submitted (and hence published), and after a few years
of excitement get replaced by another topic. Not that these waves exclude other
topics or are cleanly delineated — they simply seem to coincidentally interest a large
proportion of our community. I will not attempt to justify this premise with statistics
on topics; it’s just an observation that many experienced researchers recognize. The
first of these with which I’m familiar was relational databases, themselves, which
captivated the attention of database researchers in the last half of the 1970s, resulting
in major prototypes such as System R, Ingres, and others that formed the foundation
of products in the early 1980s. Distributed databases seemed to dominate the early
1980s, but this thread rapidly evolved into separate threads on parallel databases and
the integration of disjoint (and often heterogeneous) databases, usually called
federated databases. In the late 1980s and early 1990s, object-oriented databases
attempted to address the requirements of some under-served applications, and the
relational crowd fought back by creating ‘“extensible” databases with “object-
relational” extensions to meet the OODBMS challenge. About the same time, interest
in Datalog created strong interest in deductive databases. The mid- and late-1990s
saw the birth and explosion of interest in data warehousing and data mining,
eventually spawning a whole new research community in knowledge discovery.
Around 1999, standardization of XML rocketed XML databases into the forefront.
The early- to mid-2000s have seen great interest in streams and sensor databases.
And along the way, numerous other variations on these themes have enjoyed the
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spotlight for a while: database machines, temporal databases, multi-media and spatial
databases, scientific and statistical databases, active databases, semantic databases
and knowledge bases, and a recent favorite of mine that has yet to gain much interest
from academia — self-managing databases. To what extent has each of these topics
successfully impacted the marketplace, and why? We must learn from our successes
and failures by carefully examining why the market accepted or rejected our
technology.

My assessment is that our success has depended upon the consumability of our
technology: how well it meets a customer need, how simple it is to understand and
use, and how well standardization has stabilized its acceptance across vendors.
Relational technology succeeded and has grown spectacularly to become a U.S. $14
Billion industry in 2004 largely because it was simpler and easier to understand than
its predecessors, with a declarative query language (SQL) that simplified application
development, and was standardized early in its (product) evolution. However,
attempts to “augment” it with object-relational, temporal, and deductive extensions
have been either: (a) too complicated, (b) insufficiently vital to most consumers’
applications, and/or (c) not standardized or standardized too late in its evolution.
Parallel databases exploited increasingly inexpensive hardware to facilitate growth
and performance requirements with generally acceptable increases in complexity
(mostly in administration, not querying), whereas federated databases have seen less
success because the complexity of integrating diverse data sources largely fell on the
user. Data mining, while a genuine success in the research community, evoked a
comparative yawn in the marketplace largely because users needed to understand it to
use it, and they had difficulty understanding it because of its novelty and
mathematical intricacies. The jury is still out on XML databases, but my fear is that,
despite the need for storing increasing volumes of XML data, XQuery is far more
complicated than SQL. Similarly, stream databases are too new to be judged
adequately, but I question the market size and whether the research in the database
community adequately suits the “lean and mean” real-time requirements of the
primary market — the investment and banking industries.

How then should we increase the impact of our research in the future? First, we
must candidly assess our strengths and weaknesses. Our strengths lie in modeling the
semantics underlying information, enabling better precision in our queries than the
keyword search upon which Information Retrieval and the popular search engines are
based. We have much to offer the IR and search communities here, and they have
recognized this by aggressively hiring from the database community in the last few
years. Our models also permit reasoning about the data through complex OLAP-style
queries to extract actionable information from a sea of data. We know how to
optimize a declarative language, and how to exploit massive parallelism, far better
than any other discipline. Our primary weakness is in simplicity / usability,
particularly in setting up and administering databases. This is certainly exacerbated by
database researchers not gaining firsthand experience by routinely using databases to
store their own data. Secondly, we must reach out to other disciplines with
complementary strengths, and learn from them. Despite the lack of precision of
keyword search, why is it vastly preferred over SQL? Third, we must engage with
real users (which should include ourselves) and listen carefully to what they say.
Have you ever tried to query or manage a non-trivial database of at least 500 tables
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that was not constructed by you? Have you ever tried to add disks or nodes to an
existing database that exceeded its initial space allocation? Have you ever built and
administered a real application using a database? Did your research remedy any of
the pain points you encountered or heard from a user? Fourth, we must go back to
basics and design our systems based upon user requirements, not upon what
technology we understand or want to develop.

Pursuing the fourth item in greater detail, we should honestly ask ourselves why
less than 20% of the world’s data is stored in databases. Weren’t object-relational
extensions supposed to rectify this by enabling storage of unstructured and semi-
structured data, as well as structured data? Currently, users rely upon content
managers to manage this unstructured and semi-structured content. Though content
managers are built upon relational DBMSs, the content is stored in files, so isn’t
easily searched, and the search interface isn’t SQL. This certainly isn’t what users
want. Users want a single, uniform interface to all their data, particularly for
searching. Increasingly, they recognize that the majority of their costs are for people
and their skills, as hardware costs are driven downward by Moore’s Law. So lowering
the Total Cost of Ownership (TCO) requires systems that are easier to manage and
require fewer skilled people to manage. Users also want a scalable solution that
permits easily adding more capacity to either the storage or the computing power in
an incremental fashion as their needs for information management increase. The
increasing requirements for compliance with government regulations, as well as
business imperatives to extract more value out of information already collected in
diverse application “silos”, are driving their need to integrate systems never designed
to interact with other systems, and to be able to more pro-actively and quickly derive
business intelligence than with today’s data warehouses. Ultimately, users want to be
able to quickly and easily find, integrate, and aggregate the data that they need to
make business decisions. But that data is currently scattered throughout their
enterprise in a staggering array of incompatible systems, in a daunting tangle of
differing formats. The usual lament is that they know the data is out there somewhere,
but they can’t find it.

Clearly there are plenty of hard research problems — as well as business
opportunities! — in all of these requirements! We simply have to listen and be willing
to change our research agendas to the problems that matter most to our “customers”.
And focusing on customer pain points doesn’t preclude attempting risky, imaginative,
cool, technically advanced, and occasionally far-out technical approaches. In fact,
problems having origins in reality tend to be the most challenging. Only by doing so
will our research withstand the test of time in the marketplace of ideas, and truly have
the impact we all want for our work.
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Abstract. The application of genetic programming strategies to query
optimization has been proposed as a feasible way to solve the large join
query problem. However, previous literature shows that the potentiality
of evolutionary strategies has not been completely exploited in terms of
convergence and quality of the returned query execution plans (QEP).

In this paper, we propose two alternatives to improve the performance
of a genetic optimizer and the quality of the resulting QEPs. First, we
present a new method called Weighted Election that proposes a criterion
to choose the QEPs to be crossed and mutated during the optimization
time. Second, we show that the use of heuristics in order to create the
initial population benefits the speed of convergence and the quality of the
results. Moreover, we show that the combination of both proposals out-
performs previous randomized algorithms, in the best cases, by several
orders of magnitude for very large join queries.

1 Introduction

Query optimization based on evolutionary approaches is still an intriguing alter-
native to solve the very large join query problem. Advanced applications such
as SAP or those involving information integration often need to combine a large
set of tables to reconstruct complex business objects. For instance, the SAP
schema may contain more than 10,000 relations [6] and may join more than 20
of these in a single SQL query. As the number of relations involved in a SQL
statement increases, traditional optimizers, which are usually based on dynamic
programming techniques [I3], fail to perform satisfactorily. The main problem

* Research supported by the IBM Toronto Lab Centre for Advanced Studies and UPC
Barcelona. The authors from DAMA-UPC want to thank Generalitat de Catalunya
for its support through grant number GRE-00352 and Ministerio de Educacin y
Ciencia of Spain for its support through grant TIN2006-15536-C02-02.
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lies in the size of the search space, which grows exponentially with the increase
of the number of relations involved in the query. In this scenario, users, or even
the DBMS [20], are usually forced to split the query in smaller subqueries in
order to optimize it, obtaining QEPs that are typically far from the optimum.

Genetic approaches have proven to be a good alternative since they are in-
cluded among the best randomized approaches in terms of quality and speed of
convergence [I5]. However, there are still important aspects to be studied in order
to improve the performance of genetic approaches. On the one hand, evolution-
ary algorithms perform a beam search, based on the evolution of a population,
instead of focusing on the evolution of a single individual [I], as opposed to
random-walk algorithms like iterative improvement or simulated annealing. Al-
though this can be beneficial in terms of quality, it may jeopardize the ability
of the optimizer to converge quickly. On the other hand, recent studies show, by
means of a statistical model, that the random effects of the initial population
cannot be neglected, since they have a significant impact on the quality of the
returned QEP after the optimization process [I1]. In other words, depending
on the small sample of QEPs created at random for the initial population, the
genetic optimizer will experience difficulties to find a near optimal QEP. This is
aggravated by the fact that the search space grows exponentially as the number
of relations increases, which implies that the size of the initial population should
also grow exponentially.

In order to remedy these two drawbacks, we propose two different approaches.
We call our first proposal Weighted Election (WE) and it tackles the problem
of the speed of convergence mentioned above. In all the traditional evolution-
ary algorithms, the members of the population chosen to be crossed with other
members or mutated are chosen at random. WE proposes a new approach where
the QEPs are chosen with a certain probability depending on their associated
cost, giving more probability to low-costed plans to be chosen as opposed to
high-costed plans. Our second approach is aimed at reducing the variability in
the quality of the results, introduced by the random effects of the initial popu-
lation, by using heuristics to assure that the first sample of QEPs is not blindly
chosen from the search space, but it follows a minimum quality criterion. We
call this approach Heuristic Initial Population (HIP).

Finally, we show that the combination of both approaches is beneficial. Specifi-
cally, we compare our new approach with the Two-Phase Optimization algorithm
(2PO) [], which is considered to be the best randomized algorithm presented in
the literature. We show that our techniques significantly improve a genetic opti-
mizer and, in addition, are more suitable than previous randomized techniques
for very large join queries.

This paper is organized as follows. Section 2 introduces genetic optimization
and the genetic optimizer used in this work. Section 3 and 4 describe our pro-
posals in detail. In Section 5, we present the results obtained by the comparison
of the different algorithms. Finally, in Sections 6 and 7, we present related work
and conclude.
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2 The Carquinyoli Genetic Optimizer (CGO)

The Carquinyoli Genetic Optimizer (CGO) is, to the best of our knowledge,
the most sophisticated genetic approach presented in the literature and the first
genetic optimizer tested against a well-known commercial optimizer []. For this
reason we use CGO as the baseline of our work.

CGO is based on genetic programming. Inspired by the principles of nat-
ural selection, the basic idea of genetic programming is, given an initial set of
programs, generally called members of an initial population, to perform a set
of operations in order to get a well-fitted program able to solve a specific task.
Each member or program in the population represents a way to achieve a specific
objective and has an associated cost.

Starting with this initial population, usually created from scratch, two oper-
ations are used to produce new members in the population: (i) crossover op-
erations, which combine properties of two members in the population chosen
at random, and (ii) mutation operations, which introduce new properties into
a randomly chosen member in the population. In order to keep the size of the
population constant, a third operation, usually referred to as selection, is used
to discard the worst fitted members, using a fitness function. This process gen-
erates a new population, also called generation, that includes both the old and
the new members that have survived to the selection operation. This is repeated
iteratively until a stop condition ends the execution. Once the stop criterion is
met, the best solution is taken from the final population. Query optimization
can be reduced to a search problem where the DBMS needs to find the optimum
query execution plan (QEP) in a vast search space. Each QEP can be consid-
ered as a possible solution (or program) for the problem of finding a good access
path to retrieve the required data. Therefore, in a genetic query optimizer, every
member of the population is a QEP. Further details of CGO can be found in [§].

3 Weighted Election (WE)

Among the randomized algorithms, two different classes of algorithms have been
applied to query optimization. On the one hand, we have the random-walk based
algorithms, typically represented by iterative improvement and simulated anneal-
ing and all the improvements and combinations of these two, such as 2PO. On
the other hand, there are proposals in the literature for the use of evolution-
ary techniques as an alternative way to achieve a near-optimal QEP. There is a
fundamental difference between both alternatives: the philosophy of the search
space is different. While random-walk algorithms rely on a single individual
(QEP) and a sequence of transformations on this individual, evolutionary al-
gorithms apply the transformations on a population. As a consequence, while
genetic approaches keep more information than random-walk algorithms, which
may lead the optimizer to find better-costed QEPs, they might experience a
lower speed of convergence. This is sustained by the fact that they do not only
keep the best QEP, but they spend some time optimizing QEPs that are not
close to the optimal plan.
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In order to improve this drawback of evolutionary strategies, we propose and
analyze a new technique called Weighted Election (WE). This technique aims
at directing the search towards the directions marked by the best QEPs in the
population, by giving more opportunities to these QEPs to be crossed and mu-
tated than QEPs with higher costs. Note that high-costed QEPs still have an
opportunity to participate in the genetic operations performed by the optimizer,
although the probability is lower.

In order to assign the weight of a QEP p in the population Pop, denoted by
W, we use the following formula:

1 —C,
Wp=mam< A -a71> (1)

,Ufé - BPop

where C), is the cost associated with QEP p, I is the median cost in the
population and Bp,, is the best cost in the population. Note that W), ranges
from 1 to «, where a > 1. Specifically, QEPs with costs lower than the median
are assigned a weigh from 1 to a, while QEPs with costs higher than the median
are assigned a cost of 1. Depending on the value of a we can give more or less
importance to the differences between the costs of the QEPs in the population.
For example, for a = 2 and o = 100, the probability of the QEP with the lowest
cost in the population to be chosen is 2 and 100 times the probability of the
highest-costed QEP, respectively.

4 Heuristic Initial Population (HIP)

The quality of the initial population can be decisive in order to obtain near-
optimal QEPs. Unfortunately, since the initial population is usually created at
random [I5], its affect on the quality of the results is unpredictable. Our proposal
assures that the quality of the initial population is higher than a randomly
created population, using heuristics to create part of the plans in it.

Several heuristic algorithms have been proposed in the literature aiming at
solving the query optimization problem. Representatives of this class of algo-
rithms are the KBZ algorithm [7], the AB algorithm [I9], the Augmentation
algorithm (AG), and other greedy algorithms [TAT5II7].

Because of its working principle, the KBZ algorithm requires the assignment of
join implementations to join graph edges before the optimization is carried out.
This requirement and the restrictions concerning the cost model do not allow the
algorithm to approximate the real solution, when it deals with a sophisticated
and detailed cost model [15]. AB was developed in order to solve the restrictions
imposed by KBZ on the join implementation placement. However, even with the
AB extension it is difficult to make use of a complex cost model.

The Augmentation algorithm (AG) is an incremental heuristic method to
build QEPs. Specifically, 5 different criteria are studied, namely, choosing the
relation with minimum cardinality, choosing the relation participating in the
largest number of joins, choosing the joins with minimum selectivity, choosing
an operation using the combination of the first and the third criteria and, finally,



10 V. Muntés-Mulero et al.

using the so-called KBZ rank, related to the KBZ algorithm. Among the five
criteria, the minimum selectivity criterion turned out to be the most efficient
and, for this reason, it is the one selected for this work. Depending on the relation
chosen to start the optimization process, different QEPs can be generated. In
general, we consider that the AG algorithm does not generate a single QEP, but
as many QEPs as relations involved in the query.

Algorithm 1. HIP: Initial Population generation pseudocode

1: procedure INIPOP(time maxTime, int maxPlans)
2: int numPlan « 0;

p < generateMinimumJoinSelectivityPlan();
currentTime «— getCurrentTime();
while (p A currentTime < ™**7""¢ A numPlan < maxPlans) do
insertPlanToPopulation(p);
numPlan <« numPlan + 1;
p < generateMinimumJoinSelectivityPlan();
currentTime «— getCurrentTime();
end while

—_

11: if (numPlans < maxPlans) then

12: genRemainingRandomMembers(maxPlans - numPlans);
13: end if

14: end procedure

Algorithm [I] summarizes the working principles of HIP. In order to simplify
the implementation and the experiments, we assume that we fix the optimization
time a priori. This optimization time is passed to Algorithm [I] using the para-
meter mazTime. A number of QEPs are created (lines Bl and [{) and introduced
in the population (line [6l) using the Minimum Join Selectivity heuristic (MJS).
Since MJS has a non-trivial computational cost, generating all the members of
the population with the heuristic could be very time-consuming, exhausting the
whole optimization time, and preventing the genetic optimizer from performing
an operation. Therefore, as shown in line [l the heuristic is applied until the
maximum number of possible QEPs generated by the heuristic is reached. Thus,
we create as many QEPs as needed in the population or we spend about half
of the optimization time. Finally, if the population is not completed after the
loop, the remaining QEPs are created at random using the function genRemain-
ingRandomMembers(). This function has a parameter that specifies the number
of remaining QEPs to be created at random (line [I2)).

5 Experimental Results

Our first concern is to provide means to assure a fair comparison between the
approaches studied in this paper. With this purpose, we have used the meta-
structures created for CGO in order to implement the new techniques and 2PO,
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i.e., the QEP metadata, the functions to calculate the cost of a plan, etc. With
this, we guarantee that the efforts put on the performance optimization of CGO
are also used by the other approaches.

Our new techniques are tested first with star schemas and for random queries,
since they represent one of the most typical scenarios in Decision Support Sys-
tems, similar to those used for TPC-H. In order to provide means to generalize
our conclusions, we also test our techniques with random queries. We do not
show the results using the TPC-H benchmark since the number of relations in
this schema does not allow the creation of large join queries.

Star Join Queries. For star join queries [3] we have randomly generated two
databases containing 20 and 50 relations. Both schemas contain a large fact table
or central relation and 19 and 49 smaller dimension tables, respectively. The fact
table contains a foreign key attribute to a primary key in each dimension relation.
We have distributed the cardinalities in order to have most of the dimensions
with a significantly lower cardinality compared to the fact table. A few set of
dimensions would have cardinalities closer to the cardinality of this fact table,
but still at least one order of magnitude smaller, which typically corresponds to
real scenarios (similar to the TPC-H database schema). The number of attributes
per dimension, other than those included in the primary key, ranges from 1 to 10.
The exact number of attributes per dimension and the attribute type is chosen
at random. We define an index for every primary key.

We randomly define two sets of 9 star join queries, Q29 and Qsp, one for
each database schema. Each set contains queries involving 20 and 50 relations,
respectively. Every query includes all the relations of its corresponding database
schema with at least one explicit join condition associated with each relation.
Therefore, since CGO avoids cross products, we ensure that our queries are well
defined star join queries.

Let @ be a SQL statement reading from a set of relations and ~ the set of
constraints in (). Every constraint ¢ in -y has an associated selectivity factor s(c).
In a star join query, every dimension table typically adds some information to
the data flow or, if a constraint is affecting one of its attributes, it acts as a
filter to discard those results not matching the constraint. Let us define S as the
selectivity of the query calculated as S = Il.c,s(c). Each set of queries Q20 and
Q@50 contains 9 queries ¢;,7 = 1..9 and, in both cases, S(q1) = S(¢g2) = S(g3) =
1072, S(qa) = S(g5) = S(gs) = 10~* and S(q7) = S(gs) = S(go) = 107°.

Random Queries. We have generated 30 random queries to evaluate our pro-
posal. The set of random queries is divided into three groups involving 20, 50
and 100 join operations, respectively. In order to generate random queries we
use two tools that we have created and called rdbgen and rggen, described in [9].

Execution details. Every algorithm has been tested on all the queries. For each
star join query, we have created 5 populations. Each population is used by all the
algorithms, except for HIP, which creates a different initial population. This way,
we eliminate possible noise relative to the random effects of the initial population
and perform a fairer comparison. Every test on every evolutionary algorithm and
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population consists of 10 executions each. We also run 10 executions for 2PO.
In total, we have run 5280 executions. The experiments have been run on an
Intel® Xeon® processor at 2.8 GHz with 2 GB of RAM. Either for evolutionary
algorithms or 2PO, we use the scaled cost to compare results:

Corig/CTech —1if Corig > CTech

ScaledCost = { 1— CTech/Corig if Corig < CTech (2)

where Cl,.;q represents the best cost obtained by the original implementation
of CGO and Crp..p, represents the best cost achieved by the specified technique
to be tested. This way, the scaled cost in formula () allows us to obtain the
average from the execution of different queries and databases and it is centered
in 0. So if a technique has a positive scaled cost sc (s¢c > 0), it obtains QEPs
with costs that are, on average, more than sc times lower than those obtained
by CGO. A negative value indicates that the QEP obtained by that technique
is, on average, worse than those obtained by CGO. From here on, we compare
the techniques analyzed in this paper to CGO using formula (2)).

Carquinyoli Genetic Optimizer (CGO). In order to parameterize CGO we
use the recommendations obtained by the statistical analysis presented in [IT].
Table [l summarizes the values used to configure CGO.

Two-Phase Optimization (2PO). We have parameterized 2PO using the
configuration proposed in [4]. During the first phase of 2P0, we perform 10
local optimizations using iterative improvement. The best QEP obtained in this
first phase is used as the starting point, in the second phase, for the simulated
annealing algorithm. The starting value for the initial temperature is the 10% of
the cost of this QEP. The same parametrization for 2PO was also used in [I5].

5.1 Weighted Election Analysis

As explained before, the difference between the probability to choose the best
and the probability to choose the worst QEP in the population can be magnified
depending on the value of parameter a. In order to study the effect of this
parameter, each run is tested using five different values for a: 2, 10, 102, 10® and
10%. We run our experiments using the two different sets of queries mentioned
above, namely the star join query set, executing all the policies 10 times per
each of the 5 populations created per query, and 30 random queries, where each
policy is also run 10 times per configuration, in order to obtain averages.

Table 1. Parameters set used depending on the number of relations in the query. The
number of crossover and mutation operations presented is executed per generation.

PARAMETER # members # cross # mut
# Relations 20 50 100 20 50 100 20 50 100

Value 160 400 800 80 200 300 50 100 150
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Figure [l shows the results obtained after these experiments. The uppermost
row shows the behavior of WE for star join queries involving 20 relations. The
leftmost plot (plot a) corresponds to the star join queries with highest selectivity,
i.e., those queries that return a larger number of matches (S ~ 10~2). The plot in
the middle (plot b) corresponds to queries with S ~ 10~* and the rightmost plot
(plot ¢) to queries with lowest selectivity S ~ 10~%. Since the number of relations
is relatively small, close to what can still be handled by dynamic programming
techniques, there is still little room for improvement. In general, the larger the
value of a, the more significant the improvements introduced by WE. However,
the plots show that the difference between a« = 1000 and o = 10000 is not
significant. We can also observe that, for very low selectivity, the gains of WE
are reduced (plot ¢). This effect is explained by the fact that, when the selectivity
is very small, most of the potential tuple results are discarded, resulting in a very
low data flow cardinality in the QEP. Since the join operations can be executed
in memory and do not incur extra I/O, all the QEPs have a similar cost and
most of the executions of CGO are likely to reach a QEP with a near-optimal
cost, reducing the chances for good performance.

Analogously, the central row of plots shows the same results for star join
queries involving 50 relations. Our first observation is that, in some cases the
gains obtained by WE are several orders of magnitude larger than those obtained
by CGO. Again, we can observe that the general trend is to reward large values of

[A—WE-2 ——WE-10 - % WE-100 —8—WE-1000 —— WE-10000|

Star Join 20 Rel (a) Star Join 20 Rel (b) Star Join 20 Rel (c)
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304 3 3 \
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02 opl 2s 5s 10s BT & 041 2s 5s 10s 30s 60s
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800 1500
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] 3 ]
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Fig. 1. Scaled Cost evolution for different values of o and different configurations
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Fig. 2. Scaled Cost evolution for WE using o« = 1000, HIP, the combination of both
and 2PO studying different number of relations for star join queries

a with better performance. Also, we would prefer the performance achieved for
a = 1000 instead of that achieved for v = 10000, which is not as stable in all the
situations. There is a trade-off for parameter a: it is recommendable to use larger
values to achieve good performance (i.e., larger than 100), but too large values
increase the probability of the best plan in the population to be chosen in such
a way that, in practice, we are almost forcing the exclusive use of the best QEPs
in the population, destroying one of the main differences between the genetic
approaches and the random-walk approaches. Similarly, the improvements of WE
decrease as the selectivity decreases for the reason explained above. However,
in the worst cases we still obtain QEPs with costs that, in general, are several
times larger than those obtained by CGO.

Finally, for random queries, in the lowermost row of plots, we observe the same
trends as with the star join queries. Again, the best value of « tested is 1000,
independently of the number of relations involved in the query. Extreme cases
like @ = 2 or aw = 10000 must be avoided since they might lead to performances
worst than those by CGO.

5.2 Heuristic Initial Population Analysis

In this section we analyze the benefits obtained by generating part of the pop-
ulation using HIP. Specifically, we run the same number of executions as in the
previous analysis, using the same configurations. Figures Pl and [B] show the re-
sults of our analysis of this technique, and also the results described in the next
subsection.

We first study the behavior for star join queries. In general, the use of HIP
does always improve the performance of CGO. As suggested in [I1], spending
extra time generating good initial plans is clearly beneficial. Similar to what
happens with WE, the improvements are in general very limited in the case of
star join queries with 20 relations (left plot in Figure ), since the search space
has not grown enough to obtain QEPs that clearly differ, in terms of quality, from
those obtained by CGO. However, for 50 relations (right plot in Figure ) HIP
obtains results that are three orders of magnitude better than those obtained by
CGO. As the plot shows, for small optimization times, the improvement of our
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techniques is around 10 times better than 2PO. It takes CGO about 4 minutes
to achieve results similar to those generated by HIP, which implies that HIP
converges much faster without losing quality. For random queries (Figure [3]), we
can observe that HIP also obtains results similar to those obtained for star join
queries achieving, for queries containing 100 joins, improvement of more than
four orders of magnitude.

5.3 Combining WE and HIP vs. 2PO

Finally, we combine both techniques and compare their behavior with the best
random-walk algorithm presented in the literature: 2PO. All the experiments
in this subsection have been run using @ = 1000. As it can be observed in
Figures 2 and B, the combination of HIP and WE in CGO clearly outperforms
2P0 with star join and random queries, except for the case of 20 relations,
where they behave very similarly. The benefits obtained by the combination of
the two techniques presented in this paper obtain QEPs that are, on average,
20 times better than those obtained by 2PO, with 50 joins, and four orders of
magnitude better for 100 joins. These results show that 2PO can be used as an
intermediate solution for queries with about 20 joins, but it quickly fails to find
QEPs for very large join queries, since the search space expands exponentially,
and the random-walk algorithms potentiality degraded.

6 Related Work

The first approaches that applied genetic algorithms to query optimization con-
sidered a reduced set of QEP properties in crossover and mutation operations
[2IT5]. In these first proposals, the amount of information per plan is very lim-
ited because plans are transformed to chromosomes, represented as strings of
integers. This lack of information usually leads to the generation of invalid plans
that have to be repaired. In [I6], a genetic-programming-based optimizer is pro-
posed that directly uses QEPs as the members in the population, instead of
using chromosomes. A first genetic optimizer prototype was created for Post-
greSQL [12], but its search domain is reduced to left-deep trees and mutation
operations are deprecated, thus bounding the search to only those properties
appearing in the QEPs of the initial population. Besides, execution plans are
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Fig. 3. Scaled Cost evolution for WE using o« = 1000, HIP, the combination of both
and 2PO studying different numbers of relations for random queries
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represented as strings of integers, thereby losing a lot of important information.
CGO is presented in [§] and later analyzed in [IOJII] showing that it is possible
to find criteria to parameterize a genetic optimizer for star-join queries. Also,
several variants of random-walk algorithms have been proposed in [4BIT5ITS].
Randomized search techniques try to remedy the exponential explosion of dy-
namic programming techniques by iteratively exploring the search space and
converging to a nearly optimal solution.

7 Conclusions

In this paper we present two techniques, namely Weighted Election (WE) and
Heuristic Initial Population (HIP). These techniques tackle two important as-
pects of genetic optimization: the time wasted optimizing some QEPs in the
population with a large cost and the effects of the initial population on the
quality of the best QEP generated by the optimizer. WE is able to speed up
a genetic optimizer and achieve a quick convergence compared to the original,
meaning that, without de-randomizing the genetic evolution, it is important to
focus on those QEPs with lower associated cost, and avoid spending time opti-
mizing QEPs that are far from the best QEP in the population. HIP is the first
technique combining heuristics with genetic query optimizers, and it shows that
using simple rules to generate the initial population allows the genetic optimizer
to quickly generate good-fitted QEPs, improving the speed and the quality of
the optimizer. The combination of both techniques, which are orthogonal, is very
simple and it is shown to outperform the best random-walk approach presented
in the literature. All in all, we show that, for very large join queries, as the num-
ber of relations increases it is advisable to use genetic methods based on beam
search strategies, rather than random-walk techniques.
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Abstract. There is a need to efficiently identify reachabilities between different
types of objects over a large data graph. A reachability join (R-join) serves as a
primitive operator for such a purpose. Given two types, A and D, R-join finds all
pairs of A and D that D-typed objects are reachable from some A-typed objects.
In this paper, we focus on processing multi reachability joins (R-joins). In the
literature, the up-to-date approach extended the well-known twig-stack join algo-
rithm, to be applicable on directed acyclic graphs (DAGs). The efficiency of such
an approach is affected by the density of large DAGs. In this paper, we present
algorithms to optimize R-joins using a dynamic programming based on the esti-
mated costs associated with R-join. Our algorithm is not affected by the density
of graphs. We conducted extensive performance studies, and report our findings
in our performance studies.

1 Introduction

With the rapid growth of World-Wide-Web, new data archiving and analyzing tech-
niques bring forth a huge volume of data available in public, which is graph structured
in nature including hypertext data, semi-structured data and XML [[]]. A graph provides
great expressive power for people to describe and understand the complex relationships
among data objects. As a major standard for representing data on the World-Wide-
Web, XML provides facilities for users to view data as graphs with two different links,
the parent-child links (document-internal links) and reference links (cross-document
links). In addition, XLink (XML Linking Language) [7] and XPointer (XML Pointer
Language) [8] provide more facilities for users to manage their complex data as graphs
and integrate data effectively. Besides, RDF [3]] explicitly describes semantical resource
in graphs.

Upon such a graph, a primitive operation, reachability join (or simply R-join) was
studied [11U6]). In brief, a reachability join, A—D, denoted R-join, is to find all the
node-pairs, (a,d), in the underlying large data graph such that d is reachable from a,
denoted a ~ d, and the labels of a and d are A and D respectively. R-joins help users to
find information effectively without requesting them to fully understand the schema of
the underlying graph. We explain the need of such R-join using an XML example. In
Figure[T] it shows a graph representation (Figure[Il (b)) for an XML data (Figure[Tl (a)).
In Figure[T] (b), solid links represent document-internal links whereas dashed links rep-
resent cross-document links. We consider Figure [Tl (b) as a graph with all links being
treated in the same way. With R-join, we can easily find all the topics that a researcher
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Fig. 1. An Example

is interested in using researcher—topic. However, it would be difficult for a user
to find the same information using XPath queries, because XPath supports document-
internal links using a descendants-or-self-axis operator // and cross-document links
using value-matching based on a notion called ID/IDREF in XML. It cannot find such
information using an XPath query, researcher//topic, because topic is a child of
proj, and there is an ID/IDREF from researcher to proj. XPath requests users to
fully understand the schema and understand that the two different kinds of links are
processed in two different ways in XML data. In this paper, we focus ourselves on
optimizing and processing multi R-join queries.

A query with more than one R-joins can be naturally be represented by a query
graph. The existing approaches [5I12] extended the well-known tree-specific method,
namely, twig-stack join algorithm [4]], to process such a query graph over a DAG. We
observed that this approach is very sensitive to the density of the underlying DAG. In
this paper, we propose a dynamic programming approach that optimizes multi R-joins
in a similar fashion as to optimize multi joins, based on the estimated costs associated
with an R-join. The advantage of our approach is that it is not sensitive to the density
of the underlying DAG. We conducted extensive experimental studies on multi R-join
queries using large XMark benchmark dataset [9]], which confirms the efficiency of
our approach.

The rest of paper is organized as follows. Section[2] gives our problem statement on
multi reachability join query processing. SectionB]briefly review the existing technique
which extended the well-known twig-stack join algorithm. Together with the motiva-
tion of our approach, we discuss drawbacks of such an approach for multi R-join queries
processing. In Section ] we review the multiple interval encoding for DAGs, followed
by discussions on our cost-based approach that optimizes R-joins using a dynamic
programming approach for multi R-join queries. Section [3] reports the performance
evaluation on our proposed method. Section [6] concludes this paper.
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2 Multi Reachability Joins

We consider a database as a directed node-labeled data graph G = (V,E,L,¢). Here, V
is a set of elements, E is a set of edges, L is a set of labels, and ¢ is a mapping function
which assigns a node a label. Given a label [ € L, the extent of [ is defined as a set of
nodes in G whose label is /, denoted ext(1). Below, we use V(G) and E(G) to denote the
set of nodes and the set of edges of a graph G, respectively. Such a data graph example
is shown in Figure [Tl (b).

A reachability join, A—D, called R-join, is to find all the node-pairs, (a,d), in the
data graph G such that d is reachable from a, denoted a ~ d, and ¢(a) = A and ¢(d) =
D. We also use D<A, instead of A—D, if needed. A—D = D«—A. In this paper, we
concentrate on processing conjunctive multi R-join queries in the form of

A—BAB—CA---ANX—=Y

The following holds for R-joins.

— Asymmetric: A—B # B—A.

— Transitive: If A—B A B—C hold, then A—C.

— Associative: (A—B)—C = A—(B—C
A multi R-join query can be represented as a directed query graph, G4(V,,Eq, Ly, A).
Here, V, is a set of nodes. The node-label of a node v € V, is represented as A(v).
An edge v — u represents an R-join A—D, where the labels of v and u are A and D,
respectively. A graph representation of a multi R-join query, A—=C A B—C AC—D, is
shown in Figure[2l

We evaluate a query graph G, (V,,E;,Lg,Ay) over a data graph G(V,E,L,9). The
result of the query graph, G, denoted R (G,), consists of a set of n-ary tuples. A tuple
consists of n nodes in the data graph G, if the query graph G, has n nodes (|V (G,)| = n),
in the form of # = [vy,va,- -+ ,v,], Where there is a one-to-one mapping between v; in ¢
and u; in V(G,) such that ¢(v;) = A(u;). In addition, all nodes in the n-ary tuple r satisfy
all the reachability join conditions specified in the query graph G.

Table 1. The Graph Encoding of Table 2. The Graph Encoding of 3]
1 v 0y Iy . N o N
Instiute | /’5 2 (@) Tree Interval Encoding (D) SSPI Index
Institute 3 20 [12:13][17:20]
researcaer 502 [1:2] v Interval v Interval v preds
rescarcher 5 10 (610 L [2:11] 13 [17:20] 13 {4)
researcher 10 15 [11:15] 3 [34:41] 16 [27:30] 16 {19,4}
researcher 17 19 [12:13][17:19] 4 [42:43] 17 [35:40] 20 {13}
topic 20 7 [7:7] 5 [3:6] 19 [38:39 21 {16}
topic 21 12 [12:12] 6 [7 . 10] 20 [18 . 19]
9 [13:22] 21 [28:29]
10 [23:32]

! The chain query A<—BAB—C A --- A XY is abbreviated to Ac—sBsCe—s - <X Y.
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Example 1. Fig. [2l represents a simple multi R-join query as a directed graph. This
query graph has a node labeled Institute, a node labeled researcher and a node labeled
topic. And two edges are in the query graph. The edge from Institute node to researcher
node requires that the data node pair (i,r), i €ext(Institute) and r €ext(researcher),
such that i ~ r, should be returned; in the same time, the edge from researcher node to
topic node requires that the data node pair (r,t), r €ext(researcher) andt cext(topic),
such that r ~ t, should be returned.

3 Motivation

Recently, as an effort to extend Twig-Join in [4] to be workable on graphs, Chen et al.
studied multi R-join query processing(called pattern matching) over a directed acyclic
graph (DAG) in [5]. As an approach along the line of Twig-join [4], Chen et al. used
the interval-based encoding scheme, which is widely used for processing queries over
an XML tree, where a node v is encoded with a pair [s,e] and s and e together specify
an interval. Given two nodes u# and v in an XML tree, u is an ancestor of v, u ~» v, if
u.s < v.s and u.e > v.e or simply u’s interval contains v’s.

The test of a reachability relationship in [3] is broken into two parts. First, like the ex-
isting interval-based techniques for processing pattern matching over an XML tree, they
first check if the reachability relationships can be identified over a spanning tree gen-
erated by depth-first traversal of a DAG. Table Pla) lists the intervals from a spanning
tree over the DAG of our running example. Second, for the reachability relationship that
may exist over DAG but not in the spanning tree, they index all non-tree edges (named
remaining edges in [3]), and all nodes being incident with any such non-tree edges in
a data structure called SSPI in [3]]. Thus, all predecessor/successor relationships that
can not be identified by the intervals alone can be found with the help of SSPI. For our
running example, Table 2lb) shows SSPI.

As given in [3], for example, the procedure to find the predecessor/successor rela-
tionship of 17 ~+ 21 in the DAG of Fig. [ as follows. First, it checks the containment
of tree intervals for 17 and 21, but there is no such a path between them in the tree.
Then, because 21 has entries of predecessor in SSPI, it tries to find a reachability rela-
tionship between 17 and all 21°s predecessors in SSPI by checking the containment of
tree interval for 17 and that of each of 21’s predecessors in SSPI recursively.

As shown above, in order to identify a reachability relationship between two nodes,
say, a and d, TwigStackD need to recursively search on SSPI to check if a predecessor
of d can be reached by a. This overhead over a DAG can be costly. Consider the DAG
of 2n — 1 nodes in Fig. 2] where the solid lines are edges in the spanning tree generated
by a depth-first search, and dashed lines are the remaining edges. Note that in the SSPI,
the entry for v, contains nodes vy41,Vy42,- -+ ,V2,—1. Thus to determine the reachability
relationship from node v, to node v,, TwigStackD needs n — 1 times of checking to
see if v2,—1 can reach any node in the entry. The cost of processing R-joins queries is
considerable high.

We conducted tests to confirm our observations. We generate a DAG by collapsing all
strongly connected components in a graph that is obtained using XMark data generator
dataset with a factor 0.01 (16K nodes). Here both XML tree edge and ID/IDREF links
are treated as the edges in the graph. Fig. [ shows the performance of TwigStackD
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Fig. 4. The Test on DAGs with Increasing Densities

on 5 DAGs, with 10%, 20%, 30%, 40% and 50% of non-tree edges (called remaining
edges) as the percentage of the total tree edges in the spanning tree obtained from the
graph. The queries used are , Q1 and Q4, which are listed in Fig.[7 (a) and (d). In Fig.[d
Q(TSD) and Q(DP) are the processing costs to process Q using Chen TwigStackD and
our dynamic programming approach, respectively.

Fig. [ (a) shows the I/O number when more remaining edges are added to the under-
lying DAG. As an example, for query Q4(TSD), the I/O number increased by 4,606 from
10% to 20% on the y-axis, while it increased by 38,881 from 40% to 50% on the y-axis.
When 5 times of number of remaining edges is included, the I/O number increases about
35 times. As for the number of index seeks in SSPI, namely the number of times to seek
an leaf page from the B+-Tree that implements the SSPI, which is showed in Fig.H (c),
this value increased by 616,052 from 10% to 20% on the y-axis, while it increased by
5,201,991 from 40% to 50% on the y-axis. The correlation coefficient for such two
types of measurements is as hight as above 0.999, which speaks that such an behavior
for the number of I/0s during processing is mainly caused by the number of index seek
of SSPI. Similar situation for processing time can also be observed in Figuredl(c), since
the I/O number is the dominating factor for total processing cost. This test empirically
showed that TwigStackD performs better for DAGs with fewer remaining edges, but its
performance degrades rapidly when more edges being included in the underneath DAG.

Fig. @ (a) and (b) also show the efficiency of our dynamic programming approach.
Our approach is not so sensitive as TwigStackD is to the density of the DAG. For Q4, our
approach only uses less than 200 number of I/O access, and 1 second processing time.

4 A New Dynamic Programming Approach

Dynamic programming has been widely used and studied as an effective paradigm for
query optimization [10]. In this section, we show how to use dynamic programming to
optimize and process multi R-joins queries. In brief, we use an R-join algorithm [[11]
that uses a multiple interval encoding scheme [2] for processing R-joins over a DAG.
Below, first, we discuss the R-join algorithm [11]], and how to extend it to process
multi R-joins. Then, we will discuss R-join size estimation, and give our optimization
approach based on dynamic programming.

4.1 An R-Join Algorithm Based on a Multiple Interval Encoding

Agrawal et al. proposed an interval-based coding for encoding DAG [2]. Unlike the
approaches that assign a single code, [s : ¢], for every node in a tree, Agrawal et al.
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assigned a set of intervals and a postorder number for each node in DAG. Let I, =
{[s1:e1],[s2:ea], -+, [sn : en]} be a set of intervals assigned to a node u, there is a path
from u to v, u ~ v, if the postorder number of v is contained in an interval, [s_,- te J-] in
I,,. The interval-based coding for the graph in Figure [Tl (b) is given in Table [Il For the
same example of 17 ~» 21 in the DAG of Fig.[T] it can be identified by the 21’s pold,
12, and one interval associated with 17, [12: 13], since 12 is contained in [12 : 13].

Based on [2]], Wang et al. studied processing R-join over a directed graph [11]]. In
brief, given a directed graph, G. First, it constructs a DAG G’ by condensing all strongly
connected component in G as a node in G’. Second, it generates encoding for G’ based
on [2]]. All nodes in a strongly connected component in G share the same code assigned
to the corresponding representative node condensed in G'. Given an R-join, A—D, two
lists Alist and Dlist are formed respectively. Alist encodes every node v as (v, s:¢) where
[s:e] €1,. A node of A has n entries in the Alist, if it has n intervals. Dlist encodes
each node v as (v, po,) where po, is the postorder number. Note: Alist is sorted on the
intervals [s : e] by the ascending order of x and then the descending order of y, and Dlist
is sorted by the postnumbers in ascending order. Wang et al. proposed to merge-join the
nodes in Alist and Dlist and to scan the two lists once.

4.2 Multi R-Joins Processing

It is important to know that some necessary extension is needed to use the R-join al-
gorithm [T1]] to process multi R-joins. Consider A<D A D—E. For processing A—D,
Dlist needs to be sorted based on the postnumbers, because D is descendant. For
processing D—E, Dlist needs to be sorted based on s followed by e for all (v,s:e),
because D is a successor. Also, recall, for A ~» D, Alist needs to encode every node v as
(v,s:e) where [s : e] € I,, which means there is a blocking between the two consecutive
R-joins, A—D followed by D—FE, and we need to generate a new Alist from the output
of the previous R-join, A=—D, in order to carry out the next R-join, D—E. Thus, The
intervals and postnumbers of each node must be maintained in multi R-join processing
for regeneration of intermediate Alist or Dlist on the fly. A total three operations are
needed during such blocking that enables multi R-join query processing.

— o(A): Given a list of node vectors in the form of (vi,v2,...,v;) and each v; is in the
extension associated with A, it attaches each interval [s, e] € I,, and obtain a number
of (vi,va,...,vy,[s : e]) from every vector (vi,va,...,v;) and sorts the resulting list
to obtain an Alist from these vector. For example, considering execution of two
consequent R-joins, Institute—researcher and researcher—stopic, to process the
query of our running example, the first R-join Institute—researcher will produce
a set of temporary results A’, {(1,5),(1,6),(3,17)}. In order to make the proper
input for the second R-join researcher—topic. An 0,(A’) operation is hence applied
and we obtain {(1,5,[1:2]),(1,6,[3:4]),(3,17,[12:13]),(3,17,[17: 19])}, which
becomes the input Alist for the second R-join.

— 9(D): Similarly as o, but it attaches the postnumbers for every vector (vi,va,...,v;)
and obtains the (vi,v2,..., v, [poy,]), vi in the extension associated with D, to form
a sorted Dlist. For example, considering execution of two consequent R-joins,
researcher—topic and Institute—researcher, to process the query of our running
example, the first R-joinresearcher—topic will produce a set of temporary results
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D', {(9,20),(10,21),(17,21)}. In order to make the proper input for the second
R-join Institute—researcher. An 8(D') operation is hence applied and we obtain
{(9,20,[10]), (10,21,[15]),(17,21,[19])}, which becomes the input Dlist for the
second R-join.

- ©(A,D): Given a list of node vectors in the form of (v{,v2,...,v;) and v;/v; in a
vector is in the extensions associated with A/D, it select out those vectors satisfy-
ing v;=—v;. This is used to processing an R-join A—D when both A nodes and D
nodes already present in the partial solution. For example, considering the query
in Fig. and four consequent R-joins, I—C, [P, C—P and L—P to evaluate
that query, when the processing for /<—C, I—P and C—P has been done, we only
further need a 6(L, P) to finish the total evaluation.

We develop the cost function involving those operations during processing for multi
R-joins after the description for R-join size estimation.

4.3 R-Join Size Estimation

We introduce a simple but effective way to estimate the answer size for a sequence of
R-joins. We need two presumption for our estimation: (1) For any pair-wise R-join,
say A—D, every pair of instance (a,d), where a € ext(A) and d € ext(D), is joinable
with the same probability. (2) Consider two R-joins, say A— B and B—C, for any three
instance (a,b,c), where a € ext(A), b € ext(B), and ¢ € ext(C), the two events E| =
{a is joinable with b} and E» = {b is joinable with c} are independent.

Suppose the answer size for R-joins (Rj—Ry A ... AR;_1—R;) is M and the answer
size for the pairwise R-join Ry—R;11, where 1 < h <, is N, we will show the answer
size for (Rj—Ry A... AR;i_1—R;) A (Ry=—R;+1) can be estimated as A@[‘V, where |Ry|
is the cardinality for the extension of R,.

Suppose r; is an instance from ext(R;), and let Join(-) denote the event that instances
are joinable. Then because presumption (2), we have

Pr(Join(ry,rp..ri,riy1)) = Pr(Join(ry..r;) NJoin(ri,ry)) = Pr(Join(ry..r;)) - Pr(Join(ri, ry)).
And because of presumption (1), we have
. ~ M - ~ N
Pr(Join(r1..11)) & g ol ki Pr(Join(ri,rn)) = g, \r.. |-
So the estimated answer size of (Rj—Ry A ... AR;_1—R;) A\ (R,~—R;+1) can be
EST = |Ri[|Ro-.|Ri|[Ris1[Pr(Join(ri,ra..ri,riv1))
M N M xN
= [Ry[-.[Ris1] = .
[R1||R>|-|Ri| [Rnl|Ris1|  |Ral

So we will be able to estimate the answer size for all such R-joins by conveniently
memorizing all pairwise R-join size and all label’s extension cardinalities in the data-
base catalog.

Example 2. For our running example, the first join is Institute— research, thus M = 3.
For Institute— research—topic, since N = 3 and |ext(research)|=>5, so the estimated

result set size is 3|§|3 = 1.8. The same result can be calculated if research— topic is

taken as the first join.
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4.4 The Enumeration Space for Multi R-Joins

We use dynamic programming style optimization to enumerate a set of equivalent plans
to evaluate a multi R-join query graph G, against a database graph G. We briefly outline
the procedure of searching such plans and its execution to evaluate G.

Given a query graph G, only left-deep tree plans are searched as a common prac-
tice for a reasonable search space. Recall: in G4, a node represent a label and an edge
represents —. An R-join, A—D, is represented as an edge from A to D. Initially, sub-
graphs G, with two nodes connected by an edge are considered. Here, V(G,) = {v,u}
and E(Gy) ={(v,u)} or E(G2) = {(u,v)} depending on whether it is for ve—u or u—v.
In the next step, it considers to add one more edge. That is, it considers a subgraph
G5 with three edges, such that E3 includes all the edges in E(G3) plus one edge which
connects at least one incident node in V(G5). The last step repeats until it includes all
the nodes and edges in the original query graph G, and we can get a sequence of sub-
graphs (G2, G3, ...,G,) and a sequence of edges being added (ez, 2, ...,en ). Regarding
a subgraph in the sequence, say, G; and the edge to be added to the subgraph, which
should be ¢; or more specifically, (u;,v;), there are 3 cases:

— Only u; exists in V(G;), in this case, an o operation is needed and followed by a
join for u;~—v; and the cost is calculated as

Cr = Co - [R(Gi)| +C (e |R(Gi)| + |Dlisty, )

— Only v; exists in V(G;), in this case, an § operation maybe needed and followed
by a join for u;~—v;, since the Dlist for v; maybe obtained by the output from the
preceding join. When & operation is needed, the cost is calculated as

Ci = Cs - |R(Gi)| + C— (|R(Gi)| + |Alisty,|)
The first term in Cj; can be eliminated if no & operation needed.

— Both u; and v; exist in V(G;), in this case, an G operation is needed. The cost is
calculated as Cjj; = Co - |R(G)))).

In these cost formulae, values for |Alist,,| and |Dlist,,| are obtained from the sta-
tistics in database catalog. The intermediate result by evaluating the query graph G; is
represented as R (G;). We estimate the value of |R (G;)| according to sectionE3] The
explanation for other factors are as follows,

— Cy: factor to approximate the cost of o operation by the cardinality of the node

vectors;
— Cs: factor to approximate the cost of & operation by the cardinality of the node
vectors;
B T,
So Start End R-join Result Size Cost

/ \ S0 S1 I—R 3 10

7—S‘>ox .R_s:».l so §2 R—T 3 10

/ s1 s R—=T 1 21

S/ s sp1 I—=R 1 19

— i e

Fig. 5. Searching for an Optimal Plan using DP Fig.6. DPon G,
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— Cg: factor to approximate the cost of ¢ operation by the cardinality of the node
vectors;

— C.: factor to approximate the cost of R-join operation by the sum of two lists’
length;

— ¢&: factor to approximate the length of an Alist by the cardinality of the node vectors.

4.5 Our Dynamic Programming Algorithm

In our dynamic programming style optimization, two basic components in the solution
space are statuses and moves.

— A status, S, specifies a a subquery, Gy, as an intermediate stage in generating a query
plan. To be more specific, a subquery of G, is a subgraph G, where V(Gs) CV(Gy)
and E(G;,) C E(G,). Note: G, does not necessarily be a connected graph if without
the left-deep tree restriction.

— A move from one status (subquery Gy;) to another status (subquery GX/.) considers
an additional edge (R-join) in GX/. that does not appear in Gy, toward finding the en-
tire query plan for G,. The next status is determined based on a cost function which
results in the minimal cost, in comparison with all possible moves. The process of
moving from one status to another results in a left-deep tree which is the R-join
order selection result.

We can estimate the cost for each move by those cost formulae in Sec.[£.4l Each status
S is associated with a cost function, denoted cost(S), which is the minimal accumulated
estimated cost to move from the initial status Sy to the current status S. Such accumu-
lated cost of a sequence of moves from Sy to S is the estimated cost for evaluating the
subquery Gg being considered under the current status S. Our goal for dynamic pro-
gramming is to find the sequence of moves from the initial status Sp toward the final
status Sy with the minimum cost, cost(Sy), among all the possible sequences of moves.
This method is quite strait forward and its search space is bounded by 2.

Our algorithm is outlined in Algorithm[Il We simply apply Dijkstra’s algorithm for
the shortest path problem into our search space, aiming to find a “’shortest” path from
So to any S, where nodes represent statues, edges represent moves, and the length of
an edge is the cost of one move. We omit further explanation about Algorithm[Il

Algorithm 1. DP Algorithm to Generate Plan

1 is a priority queue of status, sorting statues in the increasing order of cost(S).
1: Initialize queue / as &;
2: Add S into /;
3: while / is NOT empty do
S=1.first;
Delete . first from [;
if S is a Final Status then
Output plan P backward from /; Terminate this Algorithm;
for each move from S to S’ do
if S’ ¢ [ then
Insert S’ into /;
else
Update cost(S') and [;

— ot ek
SoSweRaus



Cost-Based Query Optimization for Multi Reachability Joins 27

Example 3. For our running example, Figure[B shows two alternative plans for evalu-
ating the query [-R—T, both containing two moves. The status Sy is associated with
a NULL graph, while S| and Sy are respectively associated with two two graphs with
two connected nodes, and S3 is associated with the G, and thus to be a final status.
Details steps in the searching for an optimal plan is showed in Figure |6} where each
row of the table lists a move in the solution space. The first column is the status where
to start the move and the second column is the status where the move reaches. The third
column is the R-join that will be processed in that move, while the number of results
generated after the R-join is the fourth column.

5 Performance Evaluation

In this section, we conducted two sets of tests to show the efficiency of our approach.
The first set of tests is designed to compare our dynamic programming approach (de-
noted DP) with algorithm [[3]] (denoted TSD). The second set of tests further confirms the
ability to scale of our approach. We implemented all the algorithms using C++ on top
of a Minibase-based] variant deployed in Windows XP. We configure the buffer of the
database system to be 2MB. A PC with a 3.4GHz processor, 2GB memory, and 120G
hard disk running Windows XP is used to carry out all tests.

' ! Dataset V] |E| 1) 11]/|v|

! ) 20M 307,110 352214 453,526 1.478

. /} ¢ / 40M 610,140 700,250 901,365 1.477

IR P 3 . 60M 916,800 1,003,437 1,360,559 1.484

80M 1,225,216 1,337,378 1,816,493 1.483

(@) Q1 (b)Q2 (¢c)Q3 (d) Q4 100M 1,666,315 1,756,509 2,269,465 1.485
Fig.7. R-join Query Graphs Fig. 8. Datasets Statistics

We generated 20M, 40M, 60M, 80M and 100M size XMark datasets [9]] using 5
different factors, 0.2, 0.4, 0.6, 0.8, and 1.0 respectively, and named each dataset by its
size. In these XML documents, we treat parent-child edges and ID/IDREF edges with-
out difference to obtain graphs and collapse the strong connected components in graphs
to get DAGs. The details of the datasets are given in Fig.[8l In Fig.[8] the first column is
the dataset name. The second and third columns are the node number and edge number
of the resulting DAG respectively. The forth column is the multiple interval labeling
size, while the last column shows the average number of intervals per node in the DAG.
Throughout all experiments, we use the 4 multi R-join join queries listed in Fig. [Z,
where the label I stands for interest, C for category, L for listitem,D for description and
P for parlist.

5.1 TwigStackD v.s. DP

We test all queries over the same dataset described in Section [3 for the purpose of
compare TwigStackD algorithm to our approach. We show two set of figures that show
the elapsed time, number of I/Os and memory used to process each query.

2 Developed at Univ. of Wisconsin-Madison.
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Fig. 9. Compare on the DAG with 10% and 50% Remaining Edge Included

The first set of figures shows the performance on the DAG with 10 percent remaining
edges added, which are listed in Fig. 9] (a)-(c), and the second set of figures show the
performance on the DAG with 50 percent remaining edges added, which are listed in
Fig. 01()-(f).

As shown in Fig.[9] our approach significantly outperforms TwigStackD, in terms of
elapsed time, number of I/O accesses, and memory consumption. The sharp difference
becomes even greater for a denser DAG, due to the rapid performance degradation of
TwigStackD when the edge number in the DAG increases. For example, consider Q3,
TwigStackD used 16.7 times of elapsed time and 8.7 times of I/O accesses than those
for our approach when 10 percent remaining edges being added, but when 50 percent
remaining edges being added, the two rates become 2922.3 and 266.4 respectively.
The memory usage of TwigStackD is unstable, and can range from 60MB to 900MB
for the 4 queries, because TwigStackD needs to buffer every node that can potentially
participate in any final solution and thus largely depends on the solution size. And it
can also be observed that the larger query needs more memory for the increased needs
of buffer pools by TwigStackD generally.

5.2 Scalability Test of Our Approach

Because TwigStackD does not scale well, in this section, we report the scalability of
DP. With the size of the dataset increasing from 20M to 100M, we tested the scalability
performance for our approach and Fig. [10lshows the results.

Both the number of I/Os and memory usage increase evenly as the size of underly-
ing DAGs increases. However, for the processing time of each query when the data size
increased, its variation is not so uniformly. A main reason for this observation is the
CPU overhead caused by sorting which is required in o and 8 operations, for different
distribution of the data may result different join processing order, hence different num-
ber of those operations for the same query. However, there is no abrupt change for the
processing and the overall performance is still acceptable and all queries can be done
within tens of seconds.
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Fig. 10. Scalability Test on DP

6 Conclusion

In this paper, we studied query processing of multi reachability joins (R-joins) over a
large DAG. The most up-to-date approach, TwigStackD algorithm, uses a single interval
encoding scheme. TwigStackD assigns to each node in a DAG a single interval based on
a spanning tree it obtains from the DAG, and builds a complimentary index called SSPI.
It uses a twig-join algorithm to find matches that exist in the spanning tree and buffers
all nodes that belong to any solution, in order to find all matches in the DAG, with
the help of SSPI. TwigStackD has good performance for rather sparse DAGs. But, its
performance degrades noticeably when DAG becomes dense, due to the high overhead
of accessing edge transitive closures.

We present an approach of using an exisiting multiple interval encoding scheme
that assigns to each node multiple intervals. With the multiple encoding scheme, no
additional data structure is needed. We show that optimizing R-joins (R-join order se-
lection), using dynamic programming with a primitive implementation of R-join, can
significantly improve the performance, even though such an approach may introduce
overhead for feeding the intermediate result of an R-join to another. We conducted ex-
tensive performance studies and confirmed the efficiency of our DP approach. DP sig-
nificantly outperforms TwigStackD, and is not sensitive to the density of the underneath
DAG.
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Abstract. There has been much research on XML query processing.
However, there has been little work on the evaluation of XML queries
involving not-predicates. Such queries are useful and common in many
real-life applications. In this paper, we present a model called XQuery
tree to model queries involving not-predicates and describe a path-based
method to evaluate such queries efficiently. A comprehensive set of ex-
periments is carried out to demonstrate the effectiveness and efficiency
of the proposed solution.

1 Introduction

Research on XML query processing has been focused on queries involving struc-
tural join, e.g., the query ”//dept|[/name="CS"]//professor” retrieves all the
professors in the CS department. However, many real world applications also
require complex XML queries containing not-predicates. For example, the query
7/ /dept[NOT(/name="CS")]//professor” retrieves all the professors who are
not from the CS department. We call this class of queries negation queries.

A naive method to evaluate negation queries is to decompose it into several
normal queries involving structural join operation. Each decomposed query can
be evaluated using any existing structural join method [AGITISIT2TT], followed
by a post processing step to merge the results. This simplistic approach is expen-
sive because it requires repeated data scans and overheads to merge the inter-
mediate results. The work in [I0] propose a holistic path join algorithm which is
effective for path queries with not-predicates, while [I4] develop a method called
TwigStackList— to handle a limited class of twig queries with not-predicates,
i.e., queries with answer nodes above any negative edge.

In this paper, we propose a path-based approach to handle a larger class
of negation queries efficiently, i.e., queries with answer nodes both above and
below negative edges. We introduce a model called XQuery tree to model queries
involving negated containment relationship. We utilize the path-based labeling
scheme in [II] for queries involving not-predicates. Experiment results indicate
that the path-based approach is more efficient than TwigStackList—[14].

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 illustrates the drawback of the TwigStackList— method. Section 4
describes the proposed path-based approach. Section 5 gives the experimental
results and we conclude in Section 6.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 31-E2] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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2 Related Work

The structural join has become a core operation in XML queries [AU6I7ISOT2ITT].
The earliest work [12] use a sort-merge or a nested-loop approach to process the
structural join. Index-based binary structural join solutions employ BT-tree[7],
XB-tree[6], XR-tree[8] to process queries efficiently. Subsequent works extend
binary structural join to holistic twig join. Bruno et al. [6] propose a holistic twig
join algorithm, TwigStack, which aims at reducing the size of the intermediate
result and is optimal for ancestor-descendent relationship, while [I3] design an
algorithm called TwigStackList to handle parent-child relationships. The work
in [I1] design a path-based labeling scheme to reduce the number of elements
accessed in a structural join operation.

Al-Khalifa et al. [5] examine how the binary structural join method can be
employed to evaluate negation in XML queries. Algorithm PathStack— [I0] uti-
lizes a boolean stack to answer negation queries. The boolean stack contains a
boolean variable ”satisfy” which indicates whether the associated item satisfies
the sub-path rooted at this node. In this way, a negation query does not need to
be decomposed, thus improving the query evaluation process.

Algorithm TwigStackList— [14] extends the algorithm TwigStackList [I3] to
handle holistic twig negation queries. TwigStackList— also avoids decomposing
holistic negation queries into several sub-queries without negations. However,
TwigStackList— can only process a limited class of negation queries and suffer
from high computational cost (see Section [3]). In contrast, our approach utilizes
the path-based labeling scheme in [T1] to filter out unnecessary element nodes
efficiently and handles a larger class of negation queries.

3 Motivating Example

TwigStackList— [14] defines a query node as an output node if it does not appear
below any negative edge, otherwise, it is a non-output node. Consider query
T, in Fig. where {B} is an output node and {D, E, F} are non-output
nodes. Suppose we issue query T; over the XML document Docy in Fig.
whose element nodes have been labeled using the region encoding scheme [4].
TwigStackList— associates a list Lp and a stack Sp for the output node B.
Element B; in the XML document is first inserted into the list Lp. Since B;
satisfies the not-predicate condition in query 77, it is also pushed into the stack
Sp. Next, element Bs is inserted into Lp. Bs is subsequently deleted from Lp
since its descendent element D; has child nodes E5 and F}, thus satisfying the
sub-query rooted at D in T;. The final answer for T} is Bj.

There are two main drawbacks in Algorithm TwigStackList—. First, the class
of negation queries which can be processed is limited to output nodes occurring
above any negative edge. Hence, it cannot handle meaningful complex queries
such as T in Fig. which retrieves all the matching occurrences of elements
B and C such that B is not a child of A and B has child nodes C' and D while D
has a child node E but does not have a descendant node F' (we call nodes B and
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A1
(1:15,1)
B1 B2 A
(2:6,2) (7:14,2)
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:5, (8:13, 3)
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Ez/\ﬁ N /
(10:10,5)  (11:11,5) E F E F
(a) XML document (b) Query Ti (c) Query Tb

Fig. 1. Example XML document and queries

C projected nodes). Second, TwigStackList— may access elements which are
not answers to a query. For example, to answer query 17, a series of operations
is also carried out on element Bs which is not in the final answer. Our proposed
path-based approach aims to overcome these two drawbacks.

4 Path-Based Approach

The proposed approach to evaluate XML negation queries utilizes the path-based
labeling scheme proposed in [11]. We will first review the scheme and introduce
the XQuery tree model to represent negation queries. Then we describe the
algorithms PJotn— and N Join— which removes the unnecessary elements and
carries out structural join operation respectively.

4.1 Path-Based Labeling Scheme

The path-based labeling scheme [IT] identifies each element node by a pair of
(path id, node id). Each text node is identified by a node id. The node id can be
assigned using any existing node labeling scheme, e.g, interval-based [12]. A path
id is composed of a sequence of bits. We first omit the text nodes from an XML
document. Then we find distinct root-to-leaf paths in the XML document by
considering only the tag names of the elements on the paths. We use an integer
to encode each distinct root-to-leaf path in an XML document. The number of
bits in the path id is given by the number of the distinct root-to-leaf element
sequences of the tag names that occur in the XML document. Let k& denote the
number of distinct root-to-leaf paths, hence the path id of an element node has
k bits. For a leaf element node, all the bits except for the ith bit, are set to 0,
where ¢ is the encoding of the root-to-leaf path on which the leaf node occurs.
The path id of a non-leaf element node is given by a bit-or operation on the path
ids of all its child element nodes.

Fig. shows the XML document Doc; labeled using the path-based label-
ing scheme. The corresponding encoding table is given in Fig.
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A1
(111, 1)
B1 B2
(100,2) (011,5)
|
C1 C2
(100,3) (011,6)
\ | Root-to-leaf Path Encoding
a0 Root/A/B/C/E 1
A Root/A/B/C/D/E 2
E2 F
(010,28) (01)119) Root/A/B/C/D/F 3
(a) XML document (b) Encoding Table

Fig. 2. Example to illustrate Path Labeling Scheme and XQuery Tree

Let Pids and Pidp be the path ids for elements with tags A and D respec-
tively. If (Pida & Pidp) = Pidp, then we say Pida contains Pidp. This is
called Path ID Containment. Li et al. [I1] prove that the containment of two
nodes can be deduced from the containment of their path ids.

Property I: Let Pida and Pidp be the path ids for elements with tags A and
D respectively. If Pida contains Pidp and Pida # Pidp, then each A with
Pid s must have at least one descendant D with Pidp.

Consider the element nodes By and FEs in Doc;. The path id 011 for Bg
contains the path id 010 for E5 since the bit-and operation between 011 and 010
equals to 010 and they are not equal. Therefore, Bo must be an ancestor of Fs.

If two sets of nodes have the same path ids, then we need to check their
corresponding root-to-leaf paths to determine their structural relationship. For
example, the nodes By and E; in Doc; have the same path id 100. We can
decompose the path id 100 into one root-to-leaf path with the encoding 1 since
the bit in the corresponding position is 1. By looking up the first path in the
encoding table (Fig. (b)), we know that B; is an ancestor of Ej.

4.2 XQuery Tree

In this section, we define a model called XQuery tree to model queries involving
not-predicates. This is accomplished by augmenting the standard XML query
pattern tree with two new features: node projection and not operator.

Definition 1 (XQuery Tree). An XQuery Tree is defined as a tree T = (V, E)
where V and E denote the set of nodes and edges respectively.

1. A single edge denotes a parent-child relationship while a double edge denotes
an ancestor-descendant relationship.

2. Nodes to be projected are circled.

3. A negated containment relationship between two nodes is specified by putting
the symbol “=” next to the edge. We call such an edge a negated edge.
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Fig. shows an example negation query modeled using the XQuery tree. The
equivalent query specified using the XQuery language is as follows:

For $v In //B

Where exists($v/C) and exists($v/D/E) and
count(A/$v) =0 and count($v/D//F)=0

Return {$v} {$v/C}

Note that negated edges cannot occur between the projected nodes of a query
since they would result in queries that are meaningless, e.g., retrieve all the
elements A and B such that A does not contain B. Therefore, we can deduce
that given an XQuery tree T', there exists some subtree T’ of T such that T’
contains all the projected nodes in T and all edges in T” are not negated edges.

Definition 2 (Projected Tree Tp). Let T = (V, E) be an XQuery tree, and
S be the set of subtrees T' = (V' E') of T, such that

1. V' CV and
2. V' contains all the projected nodes in T, and
3. for any e € E’, e is not a negated edge.

The largest T' in S is defined as the projected tree Tp of T.

The projected tree of the XQuery tree in Fig. is shown within the dashed
circle. Given an XQuery tree T, we define the subtree above Tp as tree 75 and
the subtree below Tp as T respectively.

Definition 3 (Tree T3). Given an XQuery tree T, let R be the root node of
Tp, and e be the incoming edge of R. We define T as the subtree obtained from
T -Tg - e, where Tr denotes the subtree rooted at R.

Definition 4 (Tree T%). Given an XQuery tree T, we define TS as the subtree
rooted at C', where C denotes a child node of the leaf nodes of Tp.

In Fig. the nodes A and F form the trees T% and T% of T respectively.
Note that an XQuery tree T has at most one T% and possibly multiple T5. A
tree T's or TIZS may contain negated edges. However, queries with negated edges
in TP or Tllé may have multiple interpretations. For example, the query “A does
not contain B, and B does not contain C', where C' is the projected node” has
different semantics depending on the applications. Here, we focus on queries
whose subtrees T and T do not contain any negated edges.

4.3 Algorithm PJoin—

Algorithm PJoin [I1] filters out unnecessary path ids for queries involving struc-
tural join. The main operation in PJoin is the binary path join. A binary path
join takes as input two lists of path ids, one for the parent node and the other
for the child node. A nested loop is used to find the matching pairs of path ids
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based on the path id containment property. Any path id that does not satisfy
the path id containment relationship is removed from the lists of path ids of
both the parent node and the child node. However, this algorithm does not work
well for queries involving not-predicates.

Consider query T3 in Fig. where the lists of path ids have been associ-
ated with the corresponding nodes. We assume that the path ids with the same
subscripts satisfy the path id containment relationship, i.e., bs contains cs, etc.

Adal,az} Adal} Adal,az}
B{bl,b2b3} B {bl} B{bl, b2}

| | |
{52,[:3,(:4} {52,[:3,(:4} {c3,c4}

@ @{52‘53,34] @ @{52‘53,34] @ @{53,34]
{dl,d2,d3,d4 } {d2,d3,d4} {d3,d4}

Query Tc Query Tc after PJoin Query Tc after PJoin™
(a) (b) (c)

Fig. 3. Example to illustrate Algorithm PJoin—

Algorithm PJoin will first perform a bottom-up binary path join. The path id
lists for nodes C' and D are joined. Since the path id ds, d3 and d4 are contained
in the path id co, c3 and ¢4 respectively, d; is removed from the set of path ids
of D. The path id list of node C' is joined with the path id list of node E. No
path id is removed since each path id of E is contained in some path id of C.
We join the path id list of node B with that of node C. The path ids ¢; and c3
are contained in the path id by and bs respectively. Since there is a not-predicate
condition between nodes B and C, the path id by and b3 need to be removed
from the set of path ids of B. Finally, a binary path join between nodes A and
B is carried out and the path id as is removed.

Next, Algorithm P.Join carries out a top-down binary path join on 7% starting
from the root node A. The final result is shown in Fig. The optimal sets of
path ids for the nodes in T3 is shown in Fig. ' The difference in the two sets
of path ids shown in Fig. and Fig. . is because Algorithm P.Join does
not apply the constraint that is imposed on nodes A and B to the entire query.

The above example illustrates that the proper way to evaluate a negated
containment relationship between path ids is to only update the path ids of the
nodes in the projected tree. This leads to the design of Algorithm P.Join—.

The basic idea behind P Join— (Algorithm[]) is that given a query T', we first
apply PJoin on TS and T%. The path ids of the leaf node of T4 and the root
node(s) of T3 are used to filter out the path ids of the corresponding nodes in
Tp. The input to Algorithm PJoin— is an XQuery tree T" with a set of pro-
jected nodes. We first determine the projected tree Tp of T'. Then the PJoin
algorithm is carried out on 7% and T (if any) respectively (lines 4-5). Next, a
bottom-up binary path join and a top-down binary path join are performed on Tp
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Algorithm 1. P.Join—

: Input: T - An XQuery-tree
Output: Path ids for the nodes in T

Associate every node in T with its path ids;

Perform a bottom-up binary path join on 7% and T'8;

Perform a top-down binary path join on 7% and Tg;

Perform a path anti-join between the root node(s) of 7% and their parent node(s)
if necessary;

Perform a bottom-up binary path join on Tp;

Perform a path anti-join between the leaf node of 7' with its child node if necessary;
9: Perform a top-down binary path join on Tp;

(lines 7, 9). Each binary path join operation is followed by a path antijoin op-
eration (lines 6, 8). A path antijoin takes as input two lists of path ids, but one
list of path ids is for reference; only path ids in the other list need to be removed
if necessary. In line 6(8), the Algorithm PJoin— utilizes the root(leaf) nodes of
TE(T4) to filter out the path ids of their parent(child) node(s).

Note that if the set of path ids for the root node (leaf node) of TS (T%)
contains some path id whose corresponding element node is not a result of T
(super Pid set), then the path antijoin operation in Lines 6 (8) of Algorithm [I]
is skipped. This is because the super Pid set of the root node (leaf node) of T%
(T'%) could erroneously remove path ids from its parent node (child node), and
we may miss some correct answers in the final query result.

Consider again query T3 in Fig. The projected tree is the subtree rooted
at node C. A PJoin is first performed on tree T3 which contains nodes A and
B. The set of path ids for B obtained is {b1, b2 }. Next, bottom-up path join is
carried out on Tp. Since T3 is a simple path query without value predicates, the
path id set associated with B is not a super Pid set according to the discussion
in [T1]. Then we can perform a path anti-join between nodes B and C. This step
eliminates ¢y from the path id set of C since ¢y is contained in bs. Finally, a
top-down path join is performed on T’p, which eliminates d; and do from the set
of path ids for D, and ey from the set of path ids for E. The final result after

PJoin— is shown in Fig.

4.4 Algorithm NJoin—

We retrieve the elements with path ids output by Algorithm P.Join— and apply
Algorithm N Join— on these elements to obtain the result of the negation queries.
Algorithm 2l shows the details of N Join— method. If the negation query with
T4 is null, Algorithm N Join— will use the method TwigStackList— [I4] to cal-
culate the final result. This is because TwigStackList— cannot handle queries
with T} as illustrated in Section[Bl Otherwise, we will use the holistic structural
join in [6] to evaluate the trees T3, T5 and Tp, and then merge the results.
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Algorithm 2. N.Join—
: Input: T - An XQuery-tree
: Output: All occurrences of nodes in Tp

if T3 is null then
Perform TwigStackList— on T}

else
Perform holistic structural join on T%, T% and Tp;
Merge the intermediate result;

end if

N I

4.5 Optimality of Path-Based Approach

The optimality of the proposed solution is due to Algorithm P.Join—. This step
can greatly reduce the number of elements accessed by Algorithm N Join—.

Consider the query Ti(Fig. issued over the XML document Doc; in
Fig. The path ids of each node is shown in Fig. When Algorithm
PJoin— is applied on T, the path id {100} is removed from the path id set of
node E and {011} is removed from the path id set of node B (see Fig. [i(b)).
There is only one path id left for node B after PJoin—, which corresponds to
element By. Further processing of element Bs is not needed. Experimental results
in the next section indicate that the relatively inexpensive PJoin— can greatly
filter out the irrelevant element nodes.

The other advantage of our approach is that by decomposing negation queries
into three parts (Tp, T and T%), we can handle an additional class of queries
compared to the method TwigStackList—.

B {100, 011} B {100}
Hﬁ Hﬁ
D {o11} D {o11}
EF(oo1) by Floon
{100, 010} (010}

(a) (b)

Fig. 4. Example to illustrate optimality of path-based approach

5 Experiment Evaluation

In this section, we examine the performance of the proposed path-based solution
for negation queries. We also compare our method with TwigStackList—[I4].
Both approaches are implemented in C++. All experiments are carried out on
a Pentium IV 2.4 GHz CPU with 1 GB RAM. The operating system is Linux
2.4. The page size is set to be 4KB.
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We use three real world datasets for our experiments. They are Shakespeare’s
Plays (SSPlays) [1], DBLP [2] and XMark benchmark [3]. Table [ shows the
characteristics of the datasets and Table [2] gives the query workload.

Table 1. Characteristics of Datasets

Datasets Size #(Distinct Elements)  f#(Elements)

SSPlays 7.5 MB 21 179,690
DBLP  60.7 MB 32 1,534,453
XMark  61.4 MB 74 959,495

Table 2. Query Workload

Query Dataset Nodes in Result
Q1 //PLAY[ NOT(/PROLOGUE)]/EPILOGUE//TITLE SSPlays 13
Q2 //dblp/article] NOT(//url)] DBLP 14
Q3 //person] NOT(/creditcard)] XMark 7618
Q4 //people/person] NOT(/age)]/profile/education XMark 9568

5.1 Effectiveness of PJoin—

We first evaluate the effectiveness of PJoin— in filtering out irrelevant elements
for the subsequent N Join— operation. The following metrics are used:

. . . STINT|
Filtering Ef ficiency = *
2 |Ni|
o >IN
Selectivity Rate =
2 | Ni|

where |N?| denotes the number of instances for node N; after P.Join— operation,
|N*| denotes the number of instances for node N; in the result set after N.Join—
operation and |N;| denotes the total number of instances for node N; in the
projected tree of the query.

Fig. shows the Filtering Efficiency with Selectivity Rate for queries Q1
to Q4. The closer the two values are, the more effective PJoin— is for the query.
We observe that Algorithm PJoin— is able to remove all the unnecessary ele-
ments for queries Q1, Q2 and Q3 and the subsequent N Join— will not access
any element that does not contribute to the final result, leading to optimal query
evaluation. Query Q4 has a higher Filtering efficiency value than Query Selectiv-
ity because the query node person which is the root node of the subtree rooted
at node age is a branch node. The set of path ids for person is a super Pid set.
Nevertheless, Algorithm P.Join— remains effective in eliminating unnecessary
path ids even for such queries.

Fig. BI(b) and (c) show that the I/O cost and elapsed time of Algorithm
PJoin— are marginal compared with NJoin— for queries Q1 to Q4. This is



40 H. Li et al.

1
Filtering Efficiency O
0.8 Selectivity Rate @ |
0.6 - |
0.4 1 ]
0.2 1 ]

Q1 Q2 Q3 Q4

(a) Filtering Efficiency vs. Selectivity Rate

200
PJoin— O
NJoin— o
150 —
n
@
> -
g
® 100
]
8
Q
50
0 —— R — ,_
i Q2 Q3 Q4
(b) PJoin— and NJoin— (I/O cost)
1 ‘ ‘
PJoin— o
08 L NJoin— o
&
2 _
[+]
E 06 |
(]
E
T 04 g
B
[=%
@
[T}
02| —
Q1 Q2 Q3 Q4

(¢) PJoin— and NJoin— (Time)

Fig. 5. Effectiveness of PJoin—

because the sizes of the path lists are much smaller than that of node lists. The
time cost of PJoin— for queries Q3 and Q4 is slightly more compared to Q1 and
Q2 due to a larger number of distinct paths, as well as longer path ids for the
XMark dataset.
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5.2 Comparative Experiments

In this set of experiments, we compare our solution with TwigStackList—[I4].
Fig. [0l shows the results. The path-based solution outperforms TwigStackList—
because Algorithm PJoin— is able to greatly reduce the actual number of el-
ements retrieved while TwigStackList— is designed to reduce the intermediate
result sizes and may access all the elements involved in the queries. For example,
TwigStackList— must read in the full sets of elements when evaluating Q1.

6 Conclusion

In this paper, we have described a path-based approach to evaluate negation
queries. We introduced a model called XQuery tree to model queries involving
negated containment relationship. The proposed approach utilizes a path-based
labeling scheme to filter out irrelevant elements. Experimental results indicate
that the path-based approach is more efficient than TwigStackList— and is ef-
fective for a larger class of negation queries.
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Abstract. Progressive join algorithms are join algorithms that produce
results incrementally as input data is available. Because they are non-
blocking, they are particularly suitable for online processing of data
streams. Reference algorithms of this family are the symmetric hash join,
the X-join and more recently, the rate-based progressive join (RPJ).

While the symmetric hash join introduces the idea of a symmetric
processing of the input streams but assumes sufficient main memory, the
X-Join suggests that the processing can scale to very large amounts of
data if main memory is regularly flushed to disk, and a reactive/cleanup
phase is triggered for disk-resident data. The X-join flushing strategy
is based on a simple largest-first strategy, where the largest partition is
flushed to disk. The recently proposed RPJ predicts the main memory
tuples or partitions that should be flushed to disk in order to maximize
throughput by computing their probabilities to contribute to a result.

In this paper, we discuss the limitations of RPJ and propose a novel
extension, called Result Rate-based Progressive Join (RRPJ), which ad-
dresses these limitations. Instead of computing the probabilities from
statistics over the input data, RRPJ directly observes the output (result)
statistics. This not only yields a better performance, but also simplifies
the generalization of the algorithm to non-relational data such as multi-
dimensional data and hierarchical data. We empirically show that RRPJ
is effective and efficient and outperforms the state-of-art RPJ. We also
investigate the relevance and performance of an adaptive version of these
algorithms using amortization parameters.

Keywords: Query Processing, Join Algorithms, Data Streams.

1 Introduction

The universe of network-accessible information is expanding. It is now common
practice for applications to process streams of data incoming from remote sources
(repositories continuously publishing or sensor networks producing continuous
data). An essential operation is the equijoin of two data streams of relational
data. Designing an algorithm for such an algorithm must meet a key requirement:
the algorithm must be non-blocking (or progressive), i.e. it must be able to
produce results as soon as possible, at the least possible expense for the overall
throughput.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 43-B4] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Several non-blocking algorithms for various operators in general and for the
relational equijoin in particular have been proposed [TI2I345]. These algorithms
can be categorized as heuristic or probabilistic methods. Heuristic methods rely
on pre-defined policies for the efficient usage of the available memory; whereas
probabilistic methods [6l7] attempt to model the incoming data distribution (val-
ues and arrival parameters) and use it to predict the tuples or partitions that
are kept in memory in order to produce the maximum number of result tuples.
The main thrust in all these techniques lies in the simple idea of keeping useful
tuples or partitions (i.e. tuples or partitions likely to produce more results) in
memory. Amongst the many progressive join algorithms introduced, one of the
state-of-art hash-based progressive join algorithm is the Rate-based Progressive
Join (RPJ) [6]. One of the limitations of RPJ is that it is not able to perform
well if the data within the partitions are non-uniform, and that it is not straight-
forward to generalize it for non-relational data. In this paper, we propose the
Result-Rate based Progressive join (RRPJ) which overcomes these limitations.

The rest of the paper is organized as follows: In Section 2 we discuss related
work and focus on two recent progressive join algorithms, and their strengths
and limitations. In Section Bl we present a novel method, called Result Rate-
based Progressive Join (RRPJ), which uses a model of the result distribution
to determine which tuples to be flushed. We conduct an extensive performance
study in Section [l We conclude in Section

2 Progressive Join Algorithms

In the literature, many equijoin algorithms [2I3J45IRIOITOMTT] have been pro-
posed. Most of these algorithms considered local datasets, and do not generalize
easily to handle unpredictable data arrival common in data streams environment.
Many of these equijoin algorithms are based on the seminal work on symmetric
hash join’s (SHJ) [12]. SHJ assumes the use of in-memory hash tables; an insert-
probe paradigm is used to deliver results progressively to users. In the literature,
many subsequently proposed progressive relational join algorithms are based on
an extended SHJ model, where both in-memory and disk-resident hash parti-
tions are used to store tuples. Whenever memory becomes full, some in-memory
tuples need to be flushed to disk to make space for new-arriving tuples. XJoin
[3] uses a simple heuristics that flushes the largest partitions. Throughput can
be improved if the sacrificed tuples are those with the smallest probability of
joining with future tuples, i.e. of contributing to the production of results. This
heuristics is the basis of two recent proposals [6l7] that attempt to extrapolate
stochastic models of the data and their productivity from the observation of
incoming tuples.

2.1 Problem Definition

We consider the problem of performing a relational equijoin between two re-
lational datasets, which are transmitted from remote data sources through an
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unpredictable network. Let the two sets of relational data objects be denoted by
R={ri,r2,...,r}, and S = {s1,82,..., Sm}, where r; and s; denotes the i-th
and j-th data object from the remote data source respectively. When performing
a relational equijoin, with join attribute A, a result is returned when r;.A is
equal to s;.A. Formally, (r;, s;) is reported as the result if r;. A is equal to s;.A.
The goal is to deliver initial results quickly and ensure a high result-throughput.

2.2 Rate-Based Progressive Join (RPJ)

RPJ [6] is a hash-based join. It builds a stochastic model based on the tuples’
arrival pattern. Whenever memory becomes full, the model is used to determine
probabilistically which tuples are least likely to produce tuples with the other
incoming data, and hence flushed from memory to disk.

In order to compute the conditional probability that an incoming tuple ¢ be-
longs to the j-partition, given that ¢ belongs to relation R;, RPJ keeps track of
the total number of tuples from relation ¢ that have arrived and falls into parti-
tion 7, denoted by nf°*®[j] By dividing nf°**[j] over the total number of tuples

that have arrived in the system so far, the conditional probability P(j|R;) can be

totaly +
derived as P(j|R;) = .. Y. To reduce the need to track conditional prob-

Npart
]le ntotel[4]
abilities for each values in the domain of the join attribute, RPJ assumes that
the data in each partition is uniformly distributed. (i.e. local uniformity assump-
tion). The probability P(R;) and P(R2) are estimated by maintaining counters
ni<" for each relation R; (initially set to the number of arriving R; tuples be-
tween the initial time interval [0,1]). Subsequently, RPJ counts the number of
tuples, denoted by «; (), between the interval [t,t41]. To more accurately reflect
current arrivals, and to reduce the impact from historical arrivals, RPJ updates
the value of n[" to A\-n7" + (1—\)-q;(t), where \ is a user-tunable parameter
(varies between [0,1]).
Thus, the arrival probability p¢™

K2

(v) of a tuple belonging to relation R; and

/) e (Refer

. i
Mpart nIcnt+n£cnt

El n'fiﬂtal []]
j=

nﬁotal[

has the value v is then computed as P*""[j] =
to [6] for the complete proof).

2.3 Locality-Aware (LA) Model

[7] observes that a data stream exhibits reference locality when tuples with spe-
cific attribute values have a higher probability of re-appearing in a future time
interval. Leveraging this observation, a Locality-Aware (LA) model was pro-
posed, where the reference locality caused by both long-term popularity and
short-term correlations are captured. This is described by the following model:

Xy = Xp—; (with probability a;); x,, = y (with probability b, where 1 <i < h and
h
b+ > a; = 1. y denotes a random variable that is independent and identically

=1
distributed (IID) with respect to the probability distribution of the popularity, P.
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Using this model, the probability that a tuple ¢ will appear at the n-th position
h

of the stream is given by Prob(z,, = t|Tn—1,...,Zn—n) =bP(t)+ > a;6(xn_;,1)
j=1

(6(xg,c) = 1if x = ¢, and it is 0 otherwise). Using the LA model, the marginal
utility of a tuple is then derived, and is then used as the basis for determining
the tuples to be flushed to disk whenever memory is full.

2.4 Limitations of RPJ and LA Model

In this section, we discuss the limitations of RPJ and the LA model. RPJ rely
on the availability of an analytical model deriving the output probabilities from
statistics on the input data. This is possible in the case of relational equijoins
but embeds some uniformity assumptions that are not necessarily true. It is not
able to efficiently handle scenarios in which the data within each partition is
non-uniform, which breaks the local uniformity assumption. Consider the two
partitions, belonging to dataset R and S respectively, presented in Figure[Il The
grayed area is used to denote ranges of data. Suppose in both Figure (a) and
(b), N tuples have arrived. In Figure[I[(a), the N tuples is uniformly distributed
across the entire partitions of each dataset; whereas in Figure[I(b), the N tuples
is distributed within a specific numeric range (i.e. areas marked grey). Assume
the same number of tuples have arrived for both cases, then P(1|R) and P(1]5)
would be the same. However, it is important to note that if partition 1 is selected
to be the partition to be kept in memory, the partitions in Figure [[[(a) would
produce results as predicted by RPJ; whereas the partitions in Figure[I{b) would
fail to produce any results. Though RPJ attempts to amortize the effect of
historical arrivals of each relation, it assumes that the data distribution remains
stable throughout the lifetime of the join, which makes it less useful when the
data distribution are changing (which is common in long-running data streams).

The LA model is applied to deal with the approximate sliding window join on
relational data Based on the LA model given in the earlier section, we can see
that it relies on determining whether a similar tuple appears in a future position
in the data stream. For relational data, a similar tuple could be one that has the
same value as a previous tuple. However, for non-relational data, such as spatial
data, the notion of similarity between two tuples is more complex, and hence it
is not straightforward to extend the LA model to deal with non-relational data

types.

Partiion 1 Partiion 1 Partion 1 Partiion 1
from R from's. from R froms

(a) Uniform Data (b) Non-Uniform Data
within partition within partition

Fig. 1. Data in a Partition
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3 Result-Rated Based Progressive Join (RRPJ)

In this section, we present a novel method of maintaining statistics over the result
distribution, instead of the data distribution. This is motivated by the fact that
in most progressive join scenarios, we are concerned with delivering initial results
quickly and maintaining a high overall throughput. Hence, the criteria used to
determine which tuples need to be flushed to disk whenever memory becomes
full should be ‘result-motivated’. In addition, the number of results produced by
a partition is reflective of the data distribution of the partitions.

3.1 RRPJ

We propose a novel join algorithm, call Result-Rate Based Progressive Join
(RRPJ) (Algorithm [), which uses information on the result throughput of the
partitions to determine the tuples or partitions that are likely to produce results.
In Algorithm [, an arriving tuple is first used to probe the hash partitions of the
corresponding data stream in order to produce result tuples. Next, it will check
whether memory is full (line 2). If memory is full, it will first compute the Th;
values (i.e value computed by Equation[3)) for all the partitions. Partitions with
the lowest T'h; values will then be flushed to disk, and the newly arrived tuple
inserted. The main difference between the RRPJ flushing and RPJ is that the
Th; values are reflective of the output (i.e. results) distribution over the data
partitions; whereas the RPJ values are based on input the data distribution.

To compute the Th; values (computed using Equation [B]), we track the total
number of tuples, n; (for each partition), that contribute to a join result from
the probes against the partition. Intuitively, RRPJ tracks the join throughput
of each partition. Whenever memory becomes full, we flush n 5 (user-defined
parameter) tuples from the partition that have the smallest Th; values, since
these partitions have produced the least result so far. If the number of tuples
in the partition is less than nfy,sn, we move on to the partition with the next
lowest T'h; values.

Given two timestamps ¢; and to (t2 > ¢1)and the number of join results
produced at t; and to are n; and ns respectively. A straightforward definition
of the throughput of a partition 4, denoted by Th;, is given in Equation [l

n2 —ni

Th; = (version 1) (1)

to — 11

From Equation [[I we can observe that since (to — t1) is the same for all
partitions, it suffice to maintain counters on just the number of results produced
(i.e. n1 and ns). A partition with a high T'h; value will be the partition which
have higher potential of producing the most results. However, it is important to
note that Equation [l do not take into consideration the size of the partitions and
its impact on the number of results produced. Intuitively, a large partition will
produce more results. It is important to note that this might not always be true.
For example, a partition might contain few tuples, but produces a lot of results.
This partition should be favored over a relatively larger partition which is also
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Algorithm 1: RRPJ Join Algorithm
Data :t- Newly Arrived tuple
Result : Result Tuples
1 Use t to probe hash partitions from other data stream
2 If ( Memory is full() ) {
3 ComputeThValue() ;
4 FlushDataToDisk() }
5 Insert ¢ into hash table HT';

producing the same number of results. Besides considering the result distribution
amongst the partitions, we must also consider the following: (1) Total number
of tuples that have arrived, (2) Number of tuples in each partition, (3) Number
of result tuples produced by each partition and (4) Total results produced by
the system. Therefore, we use an improved definition for Th;, given below.

Suppose there are P partitions maintained for the relation. Let N; denote
the number of tuples in partition ¢ (1 < i < P), and R; denote the number of
result tuples produced by partition 7. Then, the T'h; value for a partition ¢ can
be computed. In Equation 2, we consider the ratio of the results produced to
the total number of results produced so far (i.e. numerator), and also the ratio
of the number of tuples in a partition to to the total number of tuples that have
arrived (i.e. denominator).

Rix(f N;)
Thi = ( PRi )/( PNi ) = p = (VeI'SiOH 2) (2)
jgl R jgl N; (j; Rj)xN;

Since the total number of results produced and the total number of tuples
is the same for all partitions, Equation ] can be simplified. This is given in
Equation 3]

Th; = ]13,1 (version 2 - after simplification) (3)

Equation [B] computes the Th; value w.r.t to the size of the partition. For
example, let us consider two cases. In case (1), suppose N; = 1 (i.e. one tuple
in the partition) and R; = 100. In case (2), suppose N; = 10 and R; = 1000.
Then, the Th; values for case (1) and (2) are the same. This prevents large
partitions from unfairly dominating the smaller partitions (due to the potential
large number of results produced by larger partitions) when a choice needs to
be made on which partitions should be flushed to disk.

3.2 Amortized RRPJ (ARRPJ)

In order to allow RRPJ to be less susceptible to varying data distributions,
we introduce Amortized RRPJ (ARRPJ). Suppose there are two partitions Py
and P, each containing 10 tuples. If P; produces 5 and 45 result tuples at
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timestamp 1 and 2 respectively, the T'hy value is 5. If partition P, produces
45 and 5 result tuples at timestamp 1 and 2 respectively, the The value for P,
will also be 5. From the above example, we can observe that the two scenarios
cannot be easily differentiated. However, we should favor partition P; since it is
obviously producing more results than P, currently. This is important because
we want to ensure that tuples that are kept in memory are able to produce more
results because of its current state, and not due to a past state.

To achieve this, let o be a user-tunable factor that determines the impact of
historical result values. The amortized RRPJ value, denoted as Al for a partition
i at time ¢ is presented in Equation@ When o = 1.0, then the amortized RRPJ
is exactly the same as the RRPJ. When o = 0.0, then only the latest RRPJ
values are considered. By varying the values of o between 0.0 to 1.0 (inclusive),
we can then control the effect of historical RRPJ on the overall flushing behavior
of the system.

At o Jtr$+at’1rg+ot72riz+ ...... +01r271+00rf j=0
(2 N; N;

4 Performance Study
In this section, we study the performance of the proposed RRPJ against RP.J. All
the experiments were conducted on a Pentium 4 2.4GHz CPU PC (1GB RAM).

We measure the progressiveness of the various flushing policies by measuring the
number of results produced and the response time.

Table 1. Experiment Parameters

Dataset Parameter Default Values
Number of Tuples Per Page 85

Available Memory 1000 pages
Domain of Join attribute [1, 10000]

Tuple Inter-arrival 0.001s

Dataset Size (Relation R1 4 Relation R2) 2 million tuples
Percentage of tuples flushed 10%

The experimental parameters are given in Table [Il Unless otherwise stated,
the datasets used in the experiments uses the default values given in the table.

4.1 Effect of Uniform Data Within Partitions

We generated the datasets HARMONY and REVERSE based on the dataset
generation techniques described in [6]. We used the same arrival pattern HAR-
MONY and REVERSE. In this experiment, we evaluate the performance of the
RRPJ against RPJ. We measure the response time (x-axis) and the number of
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result tuples generated (y-axis). From Figure 2 we can observe that the per-
formance of RRPJ is comparable to RPJ using the same datasets from [6], and
hence is at least as effective as RPJ for uniform data.

1.20407 120007
RRPY O~ o RRPY -
AP -7~ /@’ RPY -7+ ©

@\
Q

( 200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000

Execution Time(s) Execution Time(s)

(a) Harmony (b) Reverse

Fig. 2. Effect of Uniform-Data Within Partitions

4.2 Effect of Non-uniform Data Within Partitions

In this experiment, we evaluate the performance of RRPJ against RPJ for non-
uniform datasets. We used the same arrival pattern HARMONY and REVERSE.
Similar to Figure [l we restrict the domain for the join attribute for 50% of the
tuples from one dataset (R1) to be in the range [1,5000] and the domain of the
join attribute for 50% of the other dataset (R2) to be in the range [5001,10000].
We measure the response time (x-axis) and the number of result tuples generated
(y-axis). From Figure B(a) and BIb), we can observe that the RRPJ outperforms
RPJ by alarge margin. This is because RPJ’s local uniformity assumption breaks
when the data within each partition is non-uniform. Comparatively, since RRP.J
tracks the number of results, it is able to identify the partitions that are not
producing any results, and hence avoid keeping tuples belonging to these non-
productive partitions in memory.

4.3 Varying Data Arrival Distribution

The datasets are generated as follows: We make use of a zipfian distribution (with
tunable parameter ) to determine the partition for assigning a newly-arrived
tuple. When 6 = 0.0, the data distribution is uniform (i.e. a newly-arrived tuple
have equal probability of belonging to any of the partitions). When 6 increases,
the arrival distribution becomes more skewed (i.e. a newly-arrived tuple have
higher probability to belong to specific partitions). In order to simulate a vary-
ing data arrival distribution, we re-order the partitions probabilities whenever
every « tuples have arrived. The partitions are randomly re-ordered. For exam-
ple, when 6§ = 2.0, Table 2] shows the arrival probabilities. During the initial
stage, the probability that a newly arrived tuple will belong to partition 1,2,3,4
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Fig. 3. Effect of Non-Uniform-Data Within Partitions

and 5 are 0.68, 0.17, 0.08, 0.04 and 0.03 respectively. During each reorder, these
probabilities for a newly arrived tuple to belong to a specific partition change.

In this experiment, we evaluate the performance of the Amortized RRPJ
(ARRPJ) against RPJ and RRPJ, when the data arriving exhibits varying data
arrival distribution (i.e the probability that a newly arrived tuple belongs to a
partition changes). We vary the amortization factor, o, for ARRPJ between 0.0
to 1.0. We call the corresponding algorithm ARRPJ-o. When o = 0.0, only the
latest RRPJ values (i.e. number of results produced and size of data partition
since the last flush) are used; whereas when o = 1.0, ARRPJ is exactly RRPJ
(it computes the average of the statistics over time).

Table 2. Arrival Probabilities, § = 2.0

Arrival Probabilities, P Initial 1st Reorder 2nd Reorder
Partitions Assigned

0.68 1 2 3
0.17 2 3 4
0.08 3 4 5
0.04 4 5 1
0.03 5 1 2

The results are shown in Figure @(a)-(f). In addition, we summarize the
throughput (i.e. number of result tuples produced over time) of each algorithm
in table[3l In Table[3] we can observe that an amortization factor = 0.0 need not
necessarily be the best (highlighted in bold). There is a need to balance between
the impact of past and current results. From Figure[d|(a)-(e), we can observe that
ARRPJ (with different amortization factor) performs much better than RRPJ.
Also, when the data distribution changes frequently (e.g. Figure l(f), o = 0k),
the performance of RRPJ and ARRPJ are similar.

When « = 0k, the data arrival distribution is re-ordered aggressively (changes
each time a tuple arrives). Thus, all the methods (including RPJ and XJoin)
perform similarly. This is because none of the methods can make use of the
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Table 3. Throughput of various methods (Summary of Fig[])

o RRPJ ARRPJ-0.0 ARRPJ-0.2 ARRPJ-0.5 ARRPJ-0.8 ARRPJ-1.0

0 4113
4 6735
8 9783
16 11879
20 10027
32 12177

4128

7719
12266
20133
25140
36388

4128

7950
12009
20038
25152
36053

4125

7665
11503
19428
24554
34685

4119

7541
10551
17307
20887
27120

4113
6735
9783
11879
10027
12177
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statistics gathered to do effective prediction of which tuples to keep in memory
combined with a generally smaller number of possible results. However, when
« increases from 4k to 32k, we can observe that ARRPJ (with different «)
outperforms RRPJ. This is because ARRPJ was able to better reduce the impact
of the past results by amortizing the RRPJ values. RRPJ do not perform as
well, since RRPJ does not differentiate between past and current results. From
FigureM] we can also observe that as the data changes less frequently (i.e. when «
varies from 0K to 32K), the total number of result tuples significantly increases.
This is because when the data distribution changes less often, the statistics
computed could be used for more effective prediction of which tuples need to be
kept in memory.

In addition, we also varied p (percentage of pages flushed each time memory is
full, and 6 (skewness of the data distribution). Similar trends are observed. When
6 is 0.0 (i.e. uniform data), all methods (i.e. RPJ, RRPJ, ARRPJ) performs
the same. The results are omitted due to space constraints. These experiments
suggest however that several factors influence the correct evaluation of the output
statistics when data distribution is changing over time. The amortization formula
must be tuned with respect to the size of the buffer, the percentage and size of
the replaced partitions as well as the frequency of the replacement. While the
purpose of this paper is to introduce the idea of amortization and illustratively
quantify its potential, such fine tuning is left to future work.

5 Conclusion

We proposed a new adaptive and progressive equijoin algorithm for relational
data streams. The algorithm is of the X- and symmetric hash join family. Its
originality is twofold.

Firstly, the algorithm implements a replacement strategy for main memory
partitions that estimates the probability of partition to produce results directly
from the observation of output statistics. Previous proposals, such as the RPJ
and LA algorithms, have attempted to analytically construct such a model from
the statistics on the input streams. We showed that our algorithm is equivalent to
RPJ in the cases for which RPJs performance was evaluated by its inventors (we
use the same data sets). We showed that our algorithm significantly outperforms
RPJ, when the uniformity hypothesis necessary to the estimation by the RPJ
algorithm does not hold. We therefore showed that our algorithm is globally
better than RPJ empirically.

Secondly, we proposed an adaptive version of our algorithm that makes use of
amortization in order to incrementally weight out the influence of past statistics.
The same principle can be incorporated in previously proposed algorithms such
as RPJ and LA. This allows the algorithm to cater for changes over time in
the input data distributions. We showed that this technique leads to significant
performance increase in some cases, thus proving the concept. However, the
results we obtained compel further studies in order to understand the impact of
the different parameters. Future and ongoing work includes the practical tuning
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of such parameters: amortization formula, buffer size, frequency of replacements
and percentage/size of replaced partitions.

Finally we underline that, as we had preliminarily shown in [I3], as opposed
to RPJ and LA, our approach rather gracefully generalizes to non-relational
data as it does not require the complex analytical modeling of the probabilities
of partitions to produce results from a model of the input data distribution
but rather directly observes a statistical model of the output distribution. We
are currently investigating the performance of RRPJ against RPJ and LA in
non-relational domains.
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Abstract. To provide complex query processing in peer-to-peer systems has at-
tracted much attention in both academic and industrial community. We present
GChord, a scalable technique for evaluating queries with multi-attributes. Both
exact match and range queries can be handled by GChord. It has advantages over
existing methods in that each tuple only needs to be indexed once, while the query
efficiency is guaranteed. Thus, index maintenance cost and search efficiency are
balanced. Additional optimization techniques further improves the performance
of GChord. Extensive experiments are conducted to validate the efficiency of the
proposed method.

1 Introduction

Peer-to-peer (P2P) systems provide a new paradigm for information sharing in large-
scale distributed environments. Though the success of file sharing applications has
proved the potential of P2P-based systems, the limited query operators supported by
existing systems prevent their usage in more advanced applications.

Much effort has been devoted to provid fully featured database query processing
in P2P systems [1I213/4]]. There are several differences between query processing for
file sharing and database queries. Firstly, the types of data are much more complex
in databases than those in file names. Basically, numerical and categorical data types
should be supported. Secondly, files are searched via keywords. Keyword search is
often implemented by using exact match query. However, for numerical data types,
both exact match queries (or point queries) and range queries should be supported. The
last but not the least, user may issue queries with constraints on variant number of at-
tributes for database applications. This last requirement poses additional challenges for
database style query processing in P2P systems. Some existing methods, such as VBI-
Tree [2]], can only support user queries with constraints on all attributes. Some other
methods, namely Mercury [3]] and MAAN [4], separately index data on each attribute.
Though they can support multi-attribute queries with constraints on arbitrary number
of attributes, they are not efficient for indexing data with more than three attributes for
two reasons. The first one is that the maintenance cost increases with the number of
attributes. Another reason is that the selectivity of indexes on one attribute decreases
drastically when the number of attributes increases.

We present GChord, a Gray code based Chord, as a new index scheme supporting
multi-attribute queries (MAQ) in P2P environment. It distinguishes itself from other
methods in the following aspects:

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 5566 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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— GChord utilizes the property of one-bit-difference of Gray code to encode numer-
ical data. This encoding scheme, together with the traditional hash-based indexing
technique for categorical data, transforms the MAQ problem to multicast problem
in a large-scale network. Fully utilizing the finger table links provided by Chord [3]],
a general purpose P2P overlay network, GChord provides a solid base for index-
ing data without modification on the underlying overlay network structure. Thus, it
provides a convenient solution to work with existing efficient P2P technologies.

— In GChord, each data tuple only needs to be indexed once. Thus, performance of our
method does not directly rely on the number of attributes of data. Compared with
other Chord-based methods, it is more efficient in terms of maintenance overhead
and search performance.

— In additional to the basic indexing and query processing scheme, GChord intro-
duces optimization techniques called multicast tree clustering and index buddy.
The former provides an efficient implementation of multicast in P2P network for
the MAQ problem. The latter shows that by consuming a small portion of storage
space for caching index entries, GChord outperforms methods with index duplica-
tion in terms of storage cost and query processing.

The remainder of this paper is organized as follows. Section 2 is for related work of
GChord. After the problem statement given in Section 3, we introduce the basic GChord
in detail in Section 4. In Section 5, we present the optimization techniques of GChord.
After the experimental result shown in Section 6, Section 7 is for concluding remarks.

2 Related Works

MAQ is widely studied in centralized database systems. One solution of indexing data
for MAQ is hB -tree [6], which is a combination of multi-attribute index hB-tree [7]]
and abstract index I7-tree[8]. hB!/-tree achieves low storage cost and efficient point-
and range-query processing for various data types and data distribution. However, the
different setting of large-scale distributed systems prevents the application of existing
technique in centralized systems in P2P systems.

In large-scale P2P systems, distributed hash tables (DHTs), such as Chord [3], Pas-
try [9], and CAN [I0], are widely used. However, it can only support key-word-based
search lookup(key) and these hash-based methods usually cannot preserve the locality
and continuity of data.

The methods supporting MAQ in structured P2P systems can be classified into two
categories. The first one introduces traditional tree-structured index scheme into P2P
systems. BATON is P2P index structure based on balanced binary tree. BATON*
[11]] substitute the binary tree in BATON with an m-way tree. These two can well sup-
port single dimensional range query. VBI-tree [2] provides a framework for indexing
multi-dimensional data in P2P systems with hierarchical tree-structured index in cen-
tralized systems. However, these structures cannot support queries with constraints on
arbitrary number of attributes efficiently.

The other category of research work is based on extending DHT-based overlay net-
works. The basic idea behind these methods is to use one overlay network for each
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attribute that needs to be indexed, and to use locality-preserving hash to index numeri-
cal attributes. Mercury [3]] and MAAN [4]] belong to this category. Both of them index
each attribute separately on Chord ring and the index with the best selectivity power is
used to prune the search to support MAQ. Therefore, both of them have high stor-
age cost and index maintenance cost. Furthermore, the search efficiency decreases
drastically when the dimensionality of data increases.

3 Problem Statements

A tuple of data is represented by a set attribute-value pairs: t{attr;,v;},i =1,---, N.
The domain A? of attribute attr; is either numerical or categorical. A numerical domain
is supposed to be continuous or sectionally continuous, and bounded. Given a data set,
the set of domains A : {A%} fori = 1,2,---, N is supposed to be known in advance.
We believe that even with this assumption, many applications can be fit into our MAQ
model.

A multi-attribute query (MAQ) is a conjunction of a set of predicates of the form
(attr;, op,v;), i = 1,---,m, in which, attr; is the attribute name, op is one of <, <, >,
>, = for numerical attributes and = for categorical ones. Note that a query may have ar-
bitrary number of predicates, and the predicates may be on arbitrary attributes. Figure[T]
shows a simple example of data and queries.

film name(c) | price(n) | duration(n) | premiere(n) | cinema(c) 100 .
Lord of War | 50 90 05-06-1 Yongle | menio r
Garfield 60 75 06-07-12 Guang -1
XMan 90 100 05-11-4 Yonghua 111
Thinking 100 125 06-05-09 | Yonghua L,,Z?,lx“;’i"r
The Break 90 110 05-12-17 Yonghua —1o
Silther 90 100 06-10-30 Guang 010
Records L;‘:ﬁlx“o';h[
Q1: fn="Lord of War” /\ price>40 /\ price<80 ol
Q2:premiere>06-05-4 /\ premiere<06-07-09 /\ cinema=""Yongle” 001
Q3:duration>80 /\ price<90 /\ cinema="Guang” /\ premiere>06-06-17 L;:gx“t:g][
Q3:fn="XMan” A price<70 /\ premiere>06-03-12 /\ cinema="Guang” 000
Q4:fn="Thinking” A\ price=50 /\ premiere>06-07-05 OPO 0?1 0}1 0}0 110 1111 l(?l l(?O
Queries Level with prefix 0 Level with prefix 1
Fig. 1. Data Item and Query Fig.2. Two Attributes Domain Partition

The results to a MAQ are the set of tuples satisfying all predicates presented in the
query. Note that there is no constraints on the values of attributes missed in the query.

The problem of MAQ in a P2P environment is that a set of peers each may share
(or publish) a set of tuples. Each peer may issue a MAQ to be evaluated in a P2P
style, which means there is no centralized server, and the peers work in a collaborative
mechanism. To collaborate with others, a peer devotes some storage space for indexing
data shared by others, and supports index lookup and maintenance.

The difficulty of query processing for MAQ in P2P systems lies in the following
three aspects: 1) one query may involve attributes with different data types, and point
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constraint and range constraint may appear simultaneously in one query, 2) arbitrary
number of attributes may presented in a query, and 3) index maintenance is especially
expensive in P2P systems. Since there are N! — 1 possible combinations of attributes
in a query, any method using index structure that can only answer queries with fixed
number of attributes will fail to handle MAQ in P2P environment, for the high cost of
index maintenance in distributed environments.

In the next section, we present GChord, a Gray code based indexing scheme that
can be distributed over Chord like overlay network. By fully utilizing the network links
provided by the underlying network, it indexes each tuple only once, and can support
MAQ with arbitrary number of attributes using the sole index.

4 The Basic GChord Mechanism

4.1 Data Indexing

Each attribute is assigned a set of bits in the 128-bit bitstring to store its code. The

number of bits of a code is proportional to the size of the domain. Note that it is assumed

all domains are known in advance. Intuitively, the larger a domain is, the stronger is

the selectivity power of that attribute. Thus, more bits should be devoted to index that

attribute.Numerical and categorical attributes are encoded differently in GChord.
Numerical and categorical attributes are encoded differently in GChord.

Encoding Numerical Attributes. As the domain of each numerical attribute is pre-
defined, GChord partitions the domain equally and continuously. For those sectionally
continuous attribute domains, it concatenates all the sections together first, and then
makes equally partition among them. For example, if one attribute domain is composed
of three continuous sections, (1,4), (5,17), (31, 36), the four equally partitioned parts
are {(1,4),(5,71}, {(7,121},{(12,17)} and {(31,36)}. Obviously, each part contains a
interzone with same length.

All partitioned parts of one attribute domain are encoded by Standard Binary Re-
flected Gray Code [[12]|(Gray code for short) continuously and sequently, as Figure
shows. Obviously, the two Gray codes that represent two adjacent partition parts differ
in one bit. To make Gray code be fully used, we restrict the number of partitioned parts
to be 2% where k is the number of bits in Gray code.

It’s hard to compute the Gray Code from attribute value directly, while it is easy
to compute the sequence number of the partitioned part that attribute value fills in by
simply using equation, SN (v) = (=07 min) X (2" 1)

i=0 ('Ui maxz —Vimin

) ,where v is the attribute value

andv € ['Uj min, Uj maz), and m is the Gray Code length. The corresponding Gray Code
which is the sub index key on the attribute is converted from the sequence number using
algorithm[l

Encoding Categorical Attributes. Since only exact match query is to be supported
for categorical attributes in MAQ, it is much easier to encode categorical attributes. A
hash-based method is used to determine the code of a categorical value,like code(v) =
hash(v) mod 2™ in which m is the number of bits assigned to the categorical attribute,
and hash is a general purpose hash function such as SHA-1.
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Algorithm 1: SN2GC(BitString sequencenumber|n])

1 BitString graycode[n] //output Gray code which contains n bits
2 graycode[0]«— sequencenumber|0]

3 for each i from1ton — 1 do

4 if sequencenumber[i] = sequencenumber/[i-1] then
5 graycode[i]— 0

6 else

7 graycode[i]— 1

8 return graycode

Generating the Index Key for a Tuple. As the number of peers that participant in
the network is much less than the number of peers that network can accommodate,
one peer in the network have to manage many index keys. If the index key is simply
constructed by concatenating all N codes, the attribute encoded at the right side will
lose its distinguishability. All values of the attribute that is encoded on the right side
may be mapped to the same peer. It results in the index on that attribute useless.

GChord provides a shuffling-based method to generate the index key of a tuple. The
shuffled index key is constructed by concatenating a bit of code of one attribute by that
of another. The order of the attributes is pre-determined using the descending order of
the size of the domains.

Analysis to the Index Key Generation Method. Since two adjacent Gray codes only
differs in one bit, the adjacent relationships between two sections of numerical attributes
are preserved by any structured overlay network protocols that maintains one-bit differ-
ent links in routing tables, such as Chord and Pastry.

Property 1. Two index keys have one bit difference if the two corresponding tuples
have adjacent values on one numerical attribute and same values on other attributes.

Thus, our indexing scheme preserves locality of numerical attributes.

Property 2. The index keys stored on one peer are constituted by a set of continuous
partitions on each numerical attribute.

Property [l means adjacent values on each attribute are linked by the links in routing
table of the overlay network like Chord and Pastry. Query message can be routed ef-
ficiently for index keys of adjacent data are one hop away. Property 2] means that part
of the queried region may addressed by accessing one peer. As the overlay is not fully
filled, routing hops may be saved if index keys are inserted into the predecessor.

As the index key is shuffled, load balancing can achieved simultaneously. Since the
distribution of real data are always skewed and the sections of attribute domain are
encoded by equally partition, the data tuple filled in one section may skewed. Some
new strategies need to adopt to keep load balancing among peers in the network.

Lemma 1. The prefixes of a set of Gray codes, which have a same bit length, construct
the Gray Code sequence either.
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Property 3. The index keys stored on each peer constitute a similar size portion on
each attribute.

Property 4. The process of node join is the process of the attribute domain repartition.

As known from Property ] load balancing can be achieved by selecting some suitable
Id for node at the time of node join.

4.2 Query Processing

To evaluate a MAQ, a set of nodes with index entries satisfying the query should be
visited. Intuitively, attributes presented in the MAQ should satisfy the predicates in the
query. Therefore, their corresponding bits in the peer identifier, i.e. the codes of those
attributes, should satisfy the constraints. There are no constraints on other bits. Thus, the
query processing procedure can be transformed into a multicast problem. The targeted
peers are peers taking care of the identifiers satisfying the following constraints:

1. For each predicate attr op v on a numerical attribute attr, code(attr) op’ code(v);
2. For each predicate attr = v on a categorical attribute attr, code(attr) = code(v);
3. All other bits can be either O or 1.

Thus, a multicast task can be represented by a set of strings with the same length as
that of the identifier (index key). Each element in the string is either 0, 1 or x, in which
2 means either O or 1.

Multicast trees (MCTs) are constructed to forward the query to indexing peers. A
MCT is a virtual tree whose edges are routing paths of the query. A MCT corresponding
to the multicast of 10xz1zx is shown in Fig.[3l

O 1011111

1000110

o @ o

A
1010110 O‘
& o

=)
1000110
1000100

(2) (b)

Fig. 3. Multicast Tree of 10zx1xx

Multicast Tree Construction. As the links in the finger table of overlay network are di-
rected, one single MCT without irrelevant indexing nodes for MAQ may not exist. The
MCTs should be constructed on-the-fly when a query is issued. A modified Karnaugh
Map construction algorithm is employed for this task.
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Karnaugh Map is a graphical way of minimizing a boolean expression based on the
rule of complementation. Preventing processing a Karnaugh Map of large size, we com-
pute Multicast Tree Proportion (MTP) of two attributes at each time. We need compute
["] times to get all the MTPs. If m is odd, the last MTP is computed on single at-
tribute. Attribute that is not present in the query has a MTP in the form of “zx - --2”
which has a same length with the code represented the attribute partition. After all MTPs
are computed, they are shuffled and put together using the method we generate the
index keys.

Supposing the number of MTPs on each attribute that contains constraints in the
MAQ is n1,n2, ..., Ny, the number of MTPs of the MAQ is n1 X ng X ... X Nyy.
The procedure to compute MTP is as follows: (1)Initialize an empty Karnaugh Map:
each side of the map has the length equal to the length of the code of the corresponding
attribute. (2)For the cells satisfying all constraints given by the predicates on attributes
presented in both sides, they are marked by “1”. All other cells are marked by “0”. Each
cell forms a rectangle of size 1. (3)Two adjacent rectangles containing cells all marked
by “1” are merged to generate a rectangle with size 2. Note that Karnaugh Map is
a torus. Thus a leftmost cell and a rightmost cell in the same column are considered
adjacent. And likewise is to the top and bottom cells. (4)The step 3 iterates until there
is no larger rectanges can be generated.

Fig. @ shows a Karnaugh Map with three MTPs corresponding to multicast tasks
< 202, 20x >, < zlz,11x >, and < xlz, 101 >.
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Fig. 4. Karnaugh Map on Two Attributes Fig. 5. Index Buddy

Property 5. Supposing query region on two attributes is a A x B rectangle, where
A and B are the numbers of partition parts contained in query. Supposing the binary
forms of A and B contains m,n " 1”s respectively. The query rectangle can be divided
into ™I L (ifm > n) MTPs.

Proof: As the number of cells which contained in the MTP rectangle must be power
of two, the number of cells on each side of the rectangle must be power of two either.
Obviously the A cells on one attribute is divided into m parts. The B cells on the other
side of Karnaugh Map is divided into n parts. After once division, we get m +n — 1
MTPs and one (A —2%1) x (B — 2%1) rectangle that haven’t been divided, where a; and
by are the position of first ’1” in A’s and B’s binary form. Then we do it recursively. []
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After all the MTPs having been generated, we could shuffle these MTPs on each
attribute like constructing index key to constructe the MCT.

Our Karnaugh Map based MCT construction techniques can be generalized to handle
multiple queries. Targeted index peers from different MAQs may be grouped together
into one MCT using the same technique introduced above. Thus, the queries may share
the same message to retrieve the index entries. This may further reduce the network
transmitting cost.

Query Multicasting. After all the MCTs correspoding to the query have been gener-

ated,multicasting of a query is conducted as follows: (1)Query message is sent to the

root of each MCTwhich is a peer with identifier by substituting all zs in the MCT repre-

sentationwith Os. (2)When a query is received by a peer, it is evaluated on its localindex,

and forwarded to all peers whose identifier is substituting one of the xs in MCT repre-

sentation from 0 to 1. (3)This is conducted recursively until their is no = remains 0.
Fig. 3l (b) illustrates a multicast process.

Property 6. The query message routing hops can be boundedto O(log o N+ M), where
N is the number of nodes that overlay network can accommodate and M is the number
of xs in the MTP representation.

5 Performance Enhancement

The number of attributes which contain constraints in query could vary form 1 to N.
More MCTs will be generated, if there are more range constraints on attributes con-
tained in query. The number of MCTs is a product of the number of MTPs on each
attribute. The cost of multicasting a large number of MCTs involved in the query sepa-
rately is very high.

On the other hand, the query range will be very large if there are fewer attributes
which contain constraints in the query. A large number of peers have to be accessed
to process such MAQ. If MAQ is addressed by accessing a large number of peers, the
number of query message routing hops and query messages will be high. In the two
scenarios above, performance can be enhanced by multicast tree clustering and index
buddy respectively.

5.1 Multicast Tree Clustering

Peers scattered on the overlay network are sparse, so each peer needs to manage a set of
continuous index keys. A portion of continuous results to the query may be indexed on
the single peer, but these index keys may be accessed by different MCTs for constraints
of MCT computing strategy. In this scenario, a number of messages have to be sent to
the same peer to get result for the query. If these MCTs is clustered together, and sent
within single message, lots of network traffic will be saved.

MCT clustering strategy clusters MCTs which are close to each other together. Be-
fore doing MCT clustering, peers in the network need to know the approximately peer
density of overlay network. Avoiding network traffic, we estimate the peer density us-
ing local density which is the reciprocal of the index key range that peer maintained.
No matter how inaccurate the density estimation is, it has no impact on query results.
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MCT clustering only sends multi-MCTs in single query message, but it does not affect
the query evaluation to each MCT.

The clustering procedure is as follows: (1)Query submitter clusters all the MCTs to-
gether, which contain close root keys. Namely the difference of each two root keys is
less than the index range that maintained by the peer. (2)Query message is sent accord-
ing to the root key which is thesmallest one within the MCT cluster. (3)Peer received
the MCT cluster clusters all adjacent submuliticast trees together as query submitter
does. (4)Procedure 3 is done recursively until no sub multicast trees exists.

As many MCTs and sub MCTs are sent within one message, the number of message
for one query is reduced dramatically.

5.2 Index Buddy

If MAQ contains a large query region, a large number of peers will be involved to
process the query. The response time and network bandwidth consumption will be en-
larged if more peers are involved. Avoiding to involve too many peers, we adopt index
buddy strategy. An index buddy is tow peers which store adjacent values on the same
attribute and have a same peer Id prefix.

Users may have similar interests at the same time. For example users may submit
similar queries to get match list during the time of Olympic Games. If these frequently
queried index keys are stored on a few peers, reduced number of routing hops and query
messages can be achieved.

As described in Property 2] index keys stored on peer are continuous on each at-
tribute. Adding index keys that is frequently queried to the peer maintains adjacent
values on the attribute, MAQ can be addressed by accessing fewer peers in the net-
work. Fig. 3] shows the index buddy. The frequently queried region is depicted within
the red rectangle. Peers which maintain index keys within this region will manage the
index keys of its index buddy’s either. Obviously, half of the peers can be released from
processing the MAQ. The procedure of doing index buddy is as follows:

— Partition Level Sampling. Before exchanging index keys between index buddies,
we need to know the range of index keys of each attribute stored on the buddies.
We compute the index range using I R = succ.id — id. The number of partitions
managed by the peer is 2¥¢ on the ith attribute, where k; is the number of bits used
to represent partitions on the attribute in I R’s binary form.

— Frequent Query Region Detecting. We maintain one counter to indicate the cur-
rent query frequency for each attribute. The counter is a fade function that records
the number of messages which are relayed to get the adjacent value on the very

. . . . i _ FQA
attribute through links in the finger table. We use Equation FFQ A =7

old
new +

JTVt 7}:‘; to estimate the query frequency of the ¢th attribute, where N,,.,, the number
of messagesthat are sent to get the adjacent index keys on the ith attribute, T3y,
is a specified interval time. When the frequency of the ith attribute exceed the
threshold FQAY, . .;..14» the region of the attribute stored on the peer is regarded
as frequently queried.

— Index Buddy Establishing and Deleting. When detecting some attribute region

stored on the peer is frequently queried, the peer asks its index buddy to exchange
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their index keys within the region. When detecting region becomes infrequent again,
the two peers will remove these redundant index keys out of the index buddy.

— Index Modification. When index buddy existing, new index to be inserted or ex-
isting index to be modified are need to be processed at both site of the index buddy
in order to keep index consistent.

6 Experimental Study

To evaluate the performance of GChord, we implement one simulator in Java JDK 1.42.
In our implementation, each peer is identified by its peer Id. Like physical peer, it main-
tains two limited message queues, one sending message queue and one receiving mes-
sage queue. The network layer is simulated to control the network communication,
which is the message sending from one peer to another based on peer Ids.

In our experiment, 10000 peers with randomly distributed peer Ids are involved to
construct the Chord ring. The peer Id is a 32-bit string. The data tuple contains 5 numer-
ical attributes and 1 categorical attribute. 100000 data tuples with randomly distributed
values within their attribute domains need to be indexed. Range queries which have
been set maximum query range are generated randomly within the attribute domains.
Point query is generated randomly within the attribute domains.

Impact of Attribute Number in MAQ. The first set of experiments gives the perfor-
mance curves impacted by variable number of attributes which contain constraints in
the query. The maximum query range on each attribute is set to be 10% of its domain.
As showing in Fig. [6(a)] [6(b)] and [6(C)} the numbers of maximum routing hops, rout-
ing messages and accessed peers reduce dramatically when the number of attributes
that contain constraints in MAQ increase. The number of routing messages reduces to
about one tenth when using multicast tree clustering strategy. Multicast tree clustering
improves performance pretty well especially when query contains fewer attributes.

5000

4000

3000

2000

Number of Messages

1000

(a) Hops Vary with Number (b) Messages Vary with Num- (c) Accessed Peers vary with
of attributes queried ber of Attributes Queried Number of Attributes Queried

Fig. 6. Performance Comparison with Variable Attributes in Query

Impact of Query Range in MAQ. In this set of experiments, the number of attributes
that contain constraints in query is set to be 4. As showing in Fig.[7(a)l[7(b)} and[7(c)| the
numbers of maximum routing hops, routing messages and accessed peers decrease as
except when the query range on each attribute decreases. More MCTs will be generated,
when the query range on each attribute increases. Much more routing messages are
diminished by using multicast tree cluster in this scenario.
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Fig.7. Performance Comparison with Variable Query Range

Impact of Frequently Queried Region. In this set of experiments, the maximum query
range on each attribute is set to be 10% of its domain. As showing in Fig.[8(a) [B(b)]and
index buddy has evident effort in reducing the number of peers accessed when
the percentage of frequent query increase. Index buddy has a similar impact on the
maximum number of routing hops, especially when query contains less attributes.

H
R 8
5 ¢

£

Number of Hops

s .

o » —

. . — . .
2 P ED e BN o o o B o o e

Query Frequency Query Frequency Query Frequency

(a) Hops Vary with Frequent (b) Messages Vary with Fre- (c) Accessed Peers Vary with
Query quent Query Frequent Query

Fig. 8. Performance Comparison with Frequent Queries

Comparison with Mercury. As there are 10000 peers in the network, the number of
maximum hops and accessed peers in Mercury is much bigger than GChord’s. Approx-
imately 1700 peers construct a Chord ring to maintain the index keys on each attribute.
The selectivity power of the attribute is very strong, so Mercury need to accessed a large
number of peers to process MAQ. Index keys are stored continuously on peers, so ac-
cessing adjacent index key need only one more hop. That’s why the number of routing
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messages is smaller than GChord’s. As showing in Fig.[9(a)]and@(c)] the performance
of the GChord exceeds Mercury much in the number of maximum routing hops and
accessed peers.

As the limitation of paper size, the comparison of index cost with Mercury is no
showing in figures. Mercury keeps one index duplication for each attribute, so the index
cost of Mercury is proportional to the number of attributes that data tuple contains. So
the index costs of GChord, including index storage and index messages, are much less
than Mercury’s.

7 Conclusion

In this paper, we present the design of GChord, a P2P-based indexing scheme for pro-
cessing multi-attribute queries. Using Gray code based indexing technique, both point-
and range-query on numerical attributes can be handled. By integrating Gray code and
hash based encoding method, each tuple only need to be indexed once in GChord.
Our index can support queries having constraints on arbitrary number of attributes.
Thus, it is more efficient than previous methods in terms of storage cost and search
performance. Enhancement techniques further improves the performance of GChord.

Our future work on GChord includes the research on supporting keyword-based
queries and aggregate queries over GChord, and the study on more intelligent query
optimization techniques.
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Abstract. Keyword-based search is well studied in the world of text documents
and Internet search engines. While traditional database management systems
offer powerful query languages, they do not allow keyword-based search. In
this paper, we discussed ITREKS, a system that support efficient keyword-
based search over relational database by indexing tuple relationship: A basic
database tuple relationship, FDJT, is established in advance. Then a FDJT-
Tuple-Index table is created, which records relationships between each tuple
and FDJT. At query time, for each of keywords, system first finds tuples in
every relation that contain it, using full text indexes offered by database
management system. Then use FDJT-Tuple-Index table to find the joinable
tuples contain all keywords in the query.

Keywords: keyword search, relational database, full disjunction.

1 Introduction

Keyword-based search is well studied in the world of text documents and Internet
search engines, but Keyword-based search over relational databases is not well
supported. The user of a relational database needs to know the schema of the
database; Casual users must learn SQL and know the schema of the underlying data
even to pose simple searches. For example, suppose we have a DBLP database,
whose schema is shown in Figure 1. We wish to search for an author Bob’s paper
related to “relation”. To answer this query, we must know how to join the Author,
Write and Paper relations on the appropriate attributes, and we must know which
relations and attributes to contain “Bob” and “relation”. In keyword-based search, for
the above example a user should be able to enter the keywords ‘Bob relation’ and the
associated tuples which are associated with the two keywords are returned.

Enabling keyword search in databases that does not require knowledge of the
schema is a challenging task. Due to database normalization, logical units of
information may be fragmented and scattered across several physical tables. Given a
set of keywords, a matching result may need to be obtained by joining several tables
on the fly.

In this paper, we have developed a system, ITREKS (Indexing Tuple Relationship
for Efficient Keyword Search), which supports highly efficient keyword-based search

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 672007.
© Springer-Verlag Berlin Heidelberg 2007



68 J. Zhan and S. Wang

over relational databases by indexing tuple relationship. The key features and
advantages of our approach, and the contributions of this paper, are summarized as
follows:

® Most previous approaches perform a significant amount of database
computation at search time to find the connection of tuples which contain
keyword. We do all significant join computing work in advance by create tuple
relation index, so a great amount of computing work is saved in search time.

® We present a novel approach to index the tuple relationship. We construct
basic tuple relationship-FDJT by computing full disjunction[1] of the
interconnected relational database. We present an FDJT-Tuple-Index table to
index tuples’ relationship.

®  We propose a modular architecture and have implemented ITREKS based on it.

® We present an efficient algorithm which incorporate basic tuples and FDJT-
Tuple-Index table to generate result tuples matching the query.

®  We take full advantage of existing relational database functions. ITREKS has
been implemented on top of Oracle 9i. Oracle 9i Text use standard SQL to
create full text indexes on text attributes of relations. We completely avoid
reimplementing basic IR capabilities by using Oracle Text as the back end.
Furthermore, ITREKS keep both FDJT and tuple-FDJT in relation tables. Our
searching algorithm is also based on a search table.

Author White Faper Cite
Authond Authorid / Faperid K Fapend
Name FPapend Title Cite
Prirn ary key Foreign key

Fig. 1. DBLP Schema

In Section 2 we provide a thorough survey of related work. The essential formal
background on full disjunction and related definition is presented in Section 3.
Section 4 is the core of the paper. It discusses the ITREKS system, including
architecture of the system, functionality, algorithms, and system implementation
details. Section 5 presents our system evaluation of ITREKS, while we give
conclusion and future works in Section 6.

2 Related Work

Oracle [3] , IBM DB2, Microsoft SQL Server, PostgreSQL, and MySQL all provide
text search engine extensions that are tightly coupled with the database engine.
However, in all cases each text index is designed over a single column. Using this
feature alone to do meaningful keyword search over an interconnected database
would require merging the results from many column text indexes.
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Keyword-based search over relational database gets much attention recently. Three
systems, DISCOVER[4] [5] , BANKS[6] , and DBXplorer[7] , share a similar
approach: At query time, given a set of keywords, first find tuples in each relation that
contain at least one of the keywords, usually using database system auxiliary full text
indexes. Then use graph-based approaches to find tuples among those from the
previous step that can be joined together, such that the joined tuple contains all
keywords in the query. All three systems use foreign-key relationships as edges in the
graph, and point out that their approach could be extended to more general join
conditions. A main shortage of the three systems is they spend a plenty of time to find
the candidate tuples that can be joined together.

Four systems share the concept of crawling databases to build external indexes.
Verity[8] crawls the content of relational databases and builds an external text index
for keyword searches, as well as external auxiliary indexes to enable parametric
searches. DataSpot[9] extracts database content and builds an external, graph-based
representation called a hyperbase to support keyword search. Graph nodes represent
data objects such as relations, tuples, and attribute values. Query answers are
connected subgraphs of the hyperbase whose nodes contain all of the query keywords.
DbSurfer[10] indexes the textual content of each relational tuple as a virtual web
page. Given a keyword query, the system query and navigate the virtual web pages
and find the results. EKSO[11] indexes interconnected textual content in relational
databases, and do keyword search over this content. A relational database is crawled
in advance, text-indexing virtual documents that correspond to interconnected
database content. At query time, the text index supports keyword-based searches with
interactive response, identifying database objects corresponding to the virtual
documents matching the query.

All the index-data-offline systems have two challenges, how to control the
granularity of the indexed content and how to efficiently find the exact results from
the indexed content.

While a direct empirical comparison between our system and some of the other
approaches mentioned in this section would be very interesting, the comparison is not
feasible for the follow reasons:

® The systems are not publicly available.

® The systems implemented different search semantic and different result sets.

®  Any effort to implement them well enough for a fair comparison would be
prohibitive.

3 Background

3.1 Basic Tuple Relationship

In our method, we need first to find the closest and the most important connection
among tuples. In general, if we have any collection of facts that agree on common
attributes (are join-consistent) we would like them to be available in the “result” of
this collection of facts. The problem is related to that of computing the full outerjoin
of many relations in a way that preserves all possible connections among facts. Such a
computation has been termed a “full disjunction” by Galindo-Legaria[l] . A full
disjunction is a relation with nulls (represented by L ) such that every set of
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join-consistent tuples in our database appears within a tuple of the full disjunction,
with either L or a concrete value in each attribute not found among our set of tuples.
Each tuple of full disjunction is corresponding to a set of connective tuples, each of
them from a database relation. Naturally, full disjunction reflects the closest and most
important relationship among the tuples that generate them. Through full disjunction,
we can build the basic relationship of the tuples that come from different database
relation.

3.2 Full Disjunction

We consider a database that has n relations Ry,..., R,. The schema graph G is an
undirected graph that captures the primary key to foreign key relationships in the
database schema. It has a node R; for each relation R; of the database and an edge
from R; to R; for each primary key to foreign key relationship. We assume that
schema graph G is connected, which is a reasonable assumption for realistic database
schema design.

Definition 1 (Tuple Subsumption). We say that tuple t subsumes tuple u if t and u
agree in every component where u is not . That is, t is obtained from u by replacing
zero or more nulls by concrete values. Note that a tuple t subsumes itself.

Definition 2 (Full Disjunction). Let I'=R,R,,...,R, be relations whose tuples do not
have nulls. We say R is the full disjunction for T'if the following hold:

® No redundancy: No tuple of R subsumes any other tuple of R.

® Tuples of R come from connected pieces of I': Let t be a tuple of R. Then
there is some connected subset of the relations of I'such that t, restricted to its
non null components, is the join of tuples from those relations.

®  All connections are represented:

B Let t,....,ty be tuples chosen from distinct relations R. ,...,R.

iy [/

respectively, such that the schema graph of {Ril,...,Rik} is

connected.

B Let the t;’s be join-consistent, in the sense that for any attribute A, all
the components among the t;’s corresponding to attribute A have the
same value.

B Let t be the tuple that agree with each of the t;’s in those attributes

appearing among any of Rl.] yeees Rik and that has L in other attributes
found among the schemes of T
Than t is subsumed by some tuple of R.

Definition 3 (FDJT). Let t be a full disjunction tuple. We call such tuples ty,...,t; Full
Disjunction Join Tuples (FDJT) of t, if t can be generated by joining the set of
tuples ty,....tx. Each full disjunction tuple is corresponding to a set of tuples like
ty,...,tx. Note that tuples in FDJT doesn’t have sequence.

Definition 4 (FDJTR). Full Disjunction Join Tuples Relation is a relation made up
with FDJTs of all tuples in full disjunction. In ITREKS, FDJTR is made up with
relation names and tupleIDs (or rowids) of tuples in FDJT. Each pairs of relation
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name and tuplelD represent a database tuple of a FDJT.
It was proved that full disjunction is unique ' .It is easy to prove that FDJT is also
unique; otherwise there will be two equivalent tuples in full disjunction.

3.3 Computing Full Disjunction and FDJTR

We would like to find a simple way of computing the full disjunction of a set of
relations. The solution is to compute full disjunction by full outerjoin. The full
outerjoin is a variant of the join in which tuples of one relation that do not match any
tuple of the other relation are add to the result, padded with nulls. This operation is
part of the SQL92 standard. This problem of computing full disjunction by outerjoin
was studied by Galindo-Legaria in [1]. [1] gave a test for when some order of
outerjoins is guaranteed to produce the full disjunction by itself. This test is simple.
Create a graph whose nodes are the relations and whose edges connect relations that
are constrained by one or more comparison; if the graph is acyclic then the full
disjunction can be computed applying full outerjoins in any order. For cyclic graphs,
however, the full disjunctions don’t exist. Thus we have the Lemma 1.

Lemma 1. For a database which has an acyclic connected scheme graph, we can
compute full disjunction by applying full outerjoin of the connected relations in any
sequence.

Now for a database whose scheme graph is acyclic, we can use Lemma 1 to generate
a full outerjoin sequence producing the full disjunction. In the above full outerjoin
sequence, each relation appears exactly once. The relation tuples which are
outerjoined to generate a tuple of full disjunction is FDJT of this tuple. Algorithm 1
generates FDJTR when computing full disjunction of a database.

Algorithm 1. Computing FDJTR

Input: database relations Ry,...,R,, connected acyclic database graph G

Output: FDJTR of the database

1. Do breath-first traversal on G from one of the G’s leaf node of G, get a sequence
of the relations R,’,...,.R,’.

2. Let FDy store full disjunction of some connected relations R;’,...,R;’(k=2 to n),
Fy store FDJTR of FD,.

3. FD|=R1 ’

4. Add R1 to Fl

5. fori=2ton

6. FD;«FD, full ouertjoin R;’

7. foreach tuple t in FDi, add FDJT of t to Fi

8. end for

9. return Fi

Algorithm 1 first generates the relations sequence by breath-first traversal over G,
then full outerjoins the relations in turn, computing the full disjunction and
corresponding FDJTR of the relations.

We will discuss how to compute FDJTR of database whose schema is cyclic in
Section 4.
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4 The ITREKS System

The system we have developed, ITREKS, is an instantiation of the general
architecture we propose for keyword search over databases that is shown in Figure 2.
Given a set of query keywords, ITREKS returns all results (sets of joinable tuples
from relations connected by foreign-key relationship) such that each result contains
all keywords. Enabling such keyword search requires (a) a preprocessing step called
Index that enables databases for keyword search by building the table (FDJT-Tuple-
Index) which keeps tuple relationships, and (b) a Search step that gets matching
results from the published database.

Kevwords

Indexer Searcher
4

|B<'1.~:i{_' Tuple Set |

Datahase FDJTR
K1 - ¥
k2 )‘{ Search Table ]

. v
i3 \4 FDJT Tuple— 2
i ‘ TopK Result

Index
En Tuple Set

Fig. 2. Architecture of ITREKS

Index step is implemented by model Indexer in Figure 2, where Search step is
implemented by model Searcher.

4.1 Overview of Index and Search Steps

Index: A database is enabled for keyword search through the following steps.

Step 1: A database D is identified, along with its schema graph G.

Step 2: If G is cyclic, turn it into an acyclic schema graph G’ with Algorithm 2, witch
will be discussed in Section 4.2.

Step 3: Given D and G’, Indexer generates FDJTR of D using Algorithm 1.

Step 4: FDJT-Tuple-Index table is created for supporting keyword searches, which
will be discussed in detail in Section 4.3.

Search: Given a query consisting of a set of keywords, it is answered as follows.

Step 1: For each keyword k, a Basic Tuple Set (BTS) is established by using database
full text search functions. Keyword k’s BTS is a relation recording all
database tuples which have scores to k.

Step 2: Based on BTSs, FDJT-Tuple-Index table and Search Table (see Section 4.4),
Searcher finds the results (joinable tuples) which include all keywords. We
discuss this step in Section 4.4.
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4.2 Acyclization of Database Schema Graph

Given a database schema graph, ITREKS firstly cut off the cycle if the graph is
cyclic, so we can use Algorism 1 to compute the FDJTR of the database.

Figure 3 (a) is schema graph of DBLP database, where , for simplicity, A, W, P
and C denote relations Author, Write, Paper and Cite respectively. Figure 3 (b) is a
simplest but typical cyclic schema graph. ITREKS revise the cyclic database graph by
two operations: cut-off and duplication.

Cut-off: By erasing a less important edge which belongs to the cycle, we can make
cyclic schema graph acyclic. Figure 4 shows cut-off revised schema graph in Figure 3,
where the schema graph is acyclic but we lost a relation between P and C (in
Figure 4 (a)) and relation between B and C (in Figure 4 (b)), which we think is less
important. If there isn’t a less important relation, we can remove any edge in graph cycle.

L€
A W P C
(a)
B A C
{(h)} A Typical Cyclic Schema Graph (h)
Fig. 3. Two Schema Graph Fig. 4. Cut-off Revised Schema Graph
A W P C CP

(al

B A C B1
(h)

Fig. 5. Duplication Revised Schema Graph

Duplication: By renaming a relation that is in an edge deleted by cut-off operation, we
can keep relationship that is deleted by the operation. Figure 5 shows the duplication
revised schema graph in Figure 4, where CP is a renamed duplication of relation P
(in Figure 4 (a)) and B1 is a renamed duplication of relation B (in Figure 4 (b)).

Pure connective relation: In revised DBLP database graph (see Figure 5 (a)), there
are two special relations, W and C, whose attributes are all foreign keys. We call such
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relations pure connective relations, because the only function of their attributes is to
connect tuple and they don’t contain indispensable keywords for our keyword search.

In ITREKS, we discard pure connective relations in FDJTR once FDJTR is
completely constructed. For example, after computing FDJTR by Algorithm 1 over
revised DBLP schema Graph (Figure 5 (a)), the schema of FDJTR is (FDJTid, Aid,
Wid, Pid, Cid, CPid). After discard pure connective relations we get FDJTR (FDJTid,
Aid, Pid, CPid). For simplicity, we use Aid represent the tuple’s id in relation Author.
Similarly Pid and PCid are the tuple’s id in Paper.

4.3 FDJT-Tuple-Index Table

FDIJT-Tuple-Index table index each database tuples with FDJTs. ITREKS builds
tuples’ relationships by establishing FDJT-Tuple-Index table.

Extended Schema Graph: To build FDJT-Tuple-Index table, ITREKS extends
FDJTR as follow:

For each relation in FDJTR, if the relation has edges with other relations in original
database schema graph, add these relations and edges to FDJTR. If new added
relation is pure connective relation, ITREKES continue add the other relations that
have edges with the pure connective relation.

For DBLP database, the extended schema graph of FDJTR is shown in Figure 6.
Extended Schema reflects the relationship between each database relations and
FDJTR. If a relationship is not so important to be indexed, we discard the relative
relations in extended schema. For example, in Figure 6, which papers are cited by
papers in PC in FDJTR need not to be indexed, ITREKS discard relative relations W
and P. Note that extend schema graph is always a tree (is acyclic).

hadl "’-’ discard

FOJTE | T N A
cjj Cj_,-

e F (PP ]

Fig. 6. Extended Schema graph of DBLP

Locator Number: ITREKS gives each relation in extended schema a locator number
to records distance and relationship between tuple and FDJT. The number is used
when ITREKS calculate the results. ITREKS appoints locator number to relations as
follow:
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e Let FDJTR has n relations, ITREKS labels each relation in FDJTR with an integer
from 1 to n in sequence.

e For other relations in extended schema graph, the locator number consists of two
parts divided by a dot. The number in left of the dot (left number) is the number of
FDJTR’s relation connected to it; The number in right of the dot (right number) is
integer 1.

FDJT-Tuple-Index Table: In ITREKS, FDJT-Tuple-Index table has 4 columns; the
first two columns are RN and Tid which identify a database tuple’s relation name and
rowid. Column FDIJTid is rowid of a FDJT in FDJTR that has connection with the
tuple. Column N is the locator number representing the relationship between the tuple
and the FDJT. The locator number is come from the extended schema graph of the
FDJTR. In FDJT-Tuple-Index table, each row records a tuple- FDJT pair and their
relationship.

Algorithm 2. Computing FDJT-Tuple-Index Table

Input: database relations R1,...,Rn, FDJTR of the database

Output: FDJT-Tuple-Index table

1. Extend schema graph of FDJTR of the database to extended schema graph ESG.
2.  For each record R in FDJTR of ESG

3. Insert rowid, relation name and locator number of tuples in R into FDJT-
Tuple-Index table.

4. Based on ESG, insert rowid, relation name and locator number of tuples that
have relations with R into FDJT-Tuple-Index table.

5. end for
6. return FDJT-Tuple-Index table

Given a database and its FDJTR, Algorism 2 generates FDJT-Tuple-Index table.

4.4 Searching Step

After FDJT-Tuple-Index table created, ITREKS is ready for keyword search. Given a
query consisting of a set of keywords, ITREKS establishes a BTS (Basic Tuple Set)
for each keyword k, recording all database tuples which have scores to k. Then based
on BTSs, FDJT-Tuple-Index table and Search Table, Searcher finds the results
(joinable tuples) which include all keywords.

Definition 5 (BTS). For a keyword k, the Basic Tuple Set is a relation BTS":{t |
Score (T, k)>0}, which consists of the database tuples with a non-zero score for
keyword k.

ITREKS uses Oracle Text Full Text Search Function to build BTSs for each keyword.
BTS table consists of 3 columns, RN, Tid and Score, which representing relation
name, tuple id and score respectively.

Definition 6 (ST). Search Table is a table that is dynamically generated by ITREKS
to find joinable tuples at search step. Given keywords ky,...,k,, ITREKS generates a
ST with 2+k*3 columns. In ST, a keyword k; (i=1,...,n) corresponds to 3 columns,
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k;_RN, k;_Tid and k;_N, which represent tuples and relationship between the tuples.
The other two columns is FDJTid which comes from FDJT-Tuple-Index table and
Score of the result.

Definition 7 (Result Tree). Result Tree is a tree of joinable tuples based on
extended schema graph of FDJTR, where each leaf node of the tree contains at least
one keyword and the nodes of the tree contain all keywords. The sizeof(T) of a result
tree T is the number of edges in T.

Ranking Function: ITREKS uses simple but effective ranking function to rank the
result trees for a given query. ITREKS assigns the score of a result tree T in the
following way:

1 sizeof (T) k

Z ZScore(ti,kwj)

sizeof (T) P

where Score(t,kw;) is the score of a tuple #; towards keyword kw;. ITREKS computes
sizeof(T) as follow:

Let N be the tuple’s locator number that is defined in FDJT-Tuple-Index table.

Let max be the largest left number of N in result tree’s leaf nodes; Let min be the
smallest left number of N in result tree’s leaf nodes. Let r be the sum of the right
numbers of result tree’s nodes.

Computing the size of T as follow:

Sizeof(T)=max-min+r

Given a set of query keywords, ITREKS finds the results by algorithm 3 described
below.

score(T,Q)z

Algorithm 3. Generating Results

Input: a query Q, database D, FDJT-Tuple-Index table of the database FDJTTI

Output: Result Trees

1. For each keyword ki (i=1,...,n) in Q do {Create BTS_ki}

2. Sort BTS_ki in ascending order by the number of the records in the BTS table.
We might as well let BTS_k;,...,BTS_k, be the ascending order list of the BTSs
of the keywords

3.  Generate search table ST, initially empty

4. Let Fy=FDJTTI

5. F; =Fjnatural join BTS_k1

6. Add relative information(score, FDJT_id, K1_RN, K1_Tid, K1_N) to ST

7

8

9

For i=2 tondo {
F; =F,_| natural join BTS_k;
Insert relative information(Ki_RN, Ki_Tid, Ki_N) into ST and update
relative scores }
10. Remove records that contain null fields from ST
11. Sort records in ST in descending order by their scores
12. For records that have the same values on all fields Ki_RN and Ki_Tid(i=1,...,n)
in ST, only keep the record with the highest score and remove others
13. Retrieve the results from ST
14. Return result trees
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In Algorithm 3, once F;; natural join BTS_k; (i=1,...,n) and put the relative
information into ST, ST records relations of joinable tuples based on FDJT and the
joined tuples contain all keywords k; G=1,...,1).

5 System Evaluation

Our system is implemented on a PC with Pentium IV 2.8GHz processor and 4GB of
RAM, running Windows XP and Oracle 9i. ITREKS has been implemented in Java
and connects to the DBMS through JDBC.

We evaluate our tuple relationship indexing and searching system on a 102MB
DBLP[12] data set, which we decomposed into 4 relations according to the schema
shown in Figure 2. Table 1 summarizes the 4 DBLP relations. The BTS* toward
keyword k is produced by merging the tuples returned by Oracle 9i full-text index on
each relation tuple in the database.

Table 2 summarizes FDJTR and FDJT-Tuple-Index (FDJTTI) table which are
produced in preprocessing step. Because the FDJTTI table stores the relations
between all tuples and FDJTs, it is far larger that other tables. Indexing time includes
both FDJT and FDJTTI producing times and only consumes at index step.

Table 1. DBLP dataset characteristics Table 2. FDJT and FDJTTI
Relation #Tuples Size(MB) FDJT FDJTTI
Author 294063 8.62 Tuples 1248595 | 39789519
Write 1000126 36 Size(MB) | 42.99 2415.92
Paper 446409 51.1 Time(ms) | 155094 | 3798591
Cite 223013 6.7

We evaluate search performance by submitting conjunctive keyword queries of
length 2, 3, 4 and 5 words. We evaluate returning full ranked result set.

8000
6000 -
4000
2000 —

time (msec)

2 3 4 5

number of keywords

Fig. 7. Query Performance
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In each trial, we generate 50 queries by randomly choosing keywords from the
keywords set. The reported time for a trial is the average of the 50 query execution
times. Figure 7 shows query performance on the DBLP dataset. The performance of
queries returning results at less than 7 seconds and alone with the number of
keywords increase, the query times do not increase sharply.

6 Conclusion and Future Work

We presented a general architecture for supporting keyword-based search over
relational database, and implemented an instantiation of the architecture in our fully
implemented system ITREKS. ITREKS indexes tuple relationships in relational
database, providing efficient keyword search capabilities over the database. Our
system trades online search and offline indexing method to do efficient keyword
based search over relational database.

In the future, we will extend our method to semi-structured data like XML and
implement our system over more databases.
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Abstract. In this paper we propose a formal approach that transforms
a high-dimensional MBR itself to a low-dimensional MBR directly, and
show that the approach significantly reduces the number of lower-dimen-
sional transformations in similar sequence matching. To achieve this goal,
we first formally define a new notion of MBR-safe. We say that a trans-
form is MBR-safe if it constructs a low-dimensional MBR by containing
all the low-dimensional sequences to which an infinite number of high-
dimensional sequences in an MBR are transformed. We then propose an
MBR-safe transform based on DFT. For this, we prove the original DFT-
based lower-dimensional transformation is not MBR-safe and define a
new transform, called mbrDFT, by extending definition of DFT. We also
formally prove this mbrDFT is MBR-safe. Analytical and experimental
results show that our mbrDFT reduces the number of lower-dimensional
transformations drastically and improves performance significantly com-
pared with the traditional method.

1 Introduction

Time-series data are the sequences of real numbers representing values at spe-
cific points in time. Typical examples of time-series data include stock prices,
exchange rates, and weather data [II3[5I8]. The time-series data stored in a
database are called data sequences, and those given by users are called query
sequences. Finding data sequences similar to the given query sequence from
the database is called similar sequence matching [3I8]. As the distance function
D(X,Y) between two sequences X = {zo, 21, ..., Zn—1} and Y ={yo, Y1, ..., Yn—1}
of the same length n, many similar sequence matching models have used L,-

distance (= (/Z?;Ol |z; — y;|?) including the Manhattan distance (= L;), the
Euclidean distance (= Ls), and the maximum distance (= L) [TU2I3J4U7IR9].
Most similar sequence matching solutions have used the lower-dimensional
transformation to store high-dimensional sequences into a multidimensional in-
dex [I2IBBU7RII]. The lower-dimensional transformation has first been intro-
duced in Agrawal et al.’s whole matching solution [I], and widely used in various
whole matching solutions [2J5] and subsequence matching solutions [3[7I8I9]. Re-
cently, it was also used in similar sequence matching on streaming time-series
for dimensionality reduction of query sequences or streaming time-series [4]. In

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 79-@0] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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this paper we pay attention to the method of constructing an MBR (Minimum
Bounding Rectangle) in similar sequence matching. Previous similar sequence
matching solutions use MBRs to reduce the number of points to be stored in
a multidimensional index. That is, they do not store individual points directly
into the index, but stores only MBRs that contains hundreds or thousands of
the low-dimensional points. For example, a low-dimensional MBR in subsequence
matching is constructed as follows [3l9]: data sequences are divided into windows;
the high-dimensional windows are transformed to low-dimensional points; and
an MBR is constructed by containing multiple transformed points. In summary,
to construct an MBR to be stored in the index, the existing methods transform
tens ~ thousands of high-dimensional sequences (or windows) to low-dimensional
sequences (or points) [BI]. Likewise, the methods should require a huge number
of lower-dimensional transformations, and thus in this paper we tackle the prob-
lem of how to reduce the number of transformations.

To reduce the number of transformations in constructing low-dimensional
MBRs, we propose the lower-dimensional transformation method for high-
dimensional MBRs. That is, the method transforms a high-dimensional MBR
itself to a low-dimensional MBR directly, where the high-dimensional MBR con-
tains multiple high-dimensional sequences. For this, we first propose a new notion
of MBR-safe. We say that a transform 7' is MBR-safe if T satisfies the following
property: suppose MBR M is transformed to M7 by T, and sequence X is con-
tained in M, then the transformed sequence X7 by T should also be contained in
M7 If using the notion of MBR-safe, we can construct a low-dimensional MBR
by transforming a high-dimensional MBR itself rather than a large number of
individual sequences in the MBR. And accordingly, we can reduce the number
of transformations required for constructing low-dimensional MBRs.

In this paper we propose an MBR-safe transform based on DFT (Discrete
Fourier Transform) [I1], which is most widely used as the lower-dimensional
transformation. For this, we first prove the original DFT-based lower-dimensional
transformation is not MBR-safe. We then define a new transform, called mbrDFT,
by extending definition of DFT. We also formally prove this mbrDFT is MBR-
safe. Through analysis and experiments, we show superiority of the proposed
MBR-safe transform. By deriving the computational complexity of constructing
a low-dimensional MBR, we analytically show superiority of our mbrDFT. We
then empirically show that mbrDFT reduces the number of lower-dimensional
transformations drastically and improves performance significantly compared
with the traditional method.

2 Related Work

Similar sequence matching can be classified into whole matching and subsequence
matching [3]. The whole matching[1I2l5] finds data sequences similar to a query
sequence, where the lengths of data sequences and the query sequence are all
identical. On the other hand, the subsequence matching|3l[7I]] finds subsequences,
contained in data sequences, similar to a query sequence of arbitrary length.
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Also, several transform techniques such as moving average transform, shifting
& scaling, normalization transform, and time warping have been used in similar
sequence matching to solve the problems that the Euclidean distance function
has [9]. We note that most similar sequence matching solutions have used the
lower-dimensional transformation to use a multidimensional index.

Previous similar sequence matching solutions construct MBRs to reduce the
number of points to be stored in the index or to reduce the number of range
queries. For example, solutions in [Bl9] divide data sequences into windows, trans-
form the windows to low-dimensional points, and finally store MBRs containing
multiple transformed points in the index. Similarly, solutions in [7I8] divide a
query sequence into windows, transform the windows to low-dimensional points,
and finally use MBRs containing multiple transformed points in constructing
range queries. Also, recent work for continuous queries on streaming time-series
uses the method of constructing MBRs that contain multiple sequences [4]. Like-
wise, most previous solutions construct MBRs after transforming individual
high-dimensional sequences into low-dimensional sequences (points); in contrast,
our solution transforms a high-dimensional MBR itself to a low-dimensional
MBR directly. Therefore, our solution is quite different from the previous ones
in constructing MBRs.

Various transforms including DFT and Wavelet transform are used as the
lower-dimensional transformation of high-dimensional sequences. DFT is most
widely used in many similar sequence matching solutions [TI3I789]. Wavelet
transform is also used as the lower-dimensional transformation in [2/10]. Be-
sides these transforms, PAA (Piecewise Aggregate Approximation) [5] and SVD
(Singluar Value Decomposition) [6] were introduced as the lower-dimensional
transformation. All these transformations, however, focused on transforming
high-dimensional sequences to low-dimensional ones, and they cannot be directly
applied to the lower-dimensional transformation of high-dimensional MBRs.

3 Definition of MBR-Safe

We first summarize in Table [1l the notation to be used throughout the paper.
We then formally define the notion of MBR-safe as the following Definition [

Definition 1. For an n-dimensional sequence X and an n-dimensional MBR
[L, U], if a transform T satisfies the following Eq. (), then we say T is MBR-safe.

X e[L, U] = XT e [L,U)" (1)

Figure [I] depicts the concept of MBR-safe. In Figure [l transform T'1 is MBR-
safe, but T2 is not. The reason why T'1 is MBR-safe is that, if an arbitrary
sequence X is contained in MBR [L,U] (i.e., X € [L,U]), then the transformed
sequence X1 is also contained in the transformed MBR [L,U]™! (i.e., XT! €
[L,U]TY = [A,7]). Analogously, the reason why T2 is not MBR-safe is that,
even though X is contained in [L,U] (i.e., X € [L,U]), X*? is not contained in
[L,U)T2 (le., XT2 ¢ [L,UT? = [A,B]).
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Table 1. Summary of notation

Symbols Definitions
X A high-dimensional sequence. (= {zo,Z1,..., Tn—1})
xT A (low-dimensional) sequence transformed from X by the transform 7.

(={af,2T,..., 2L _1})
[L,U] A high-dimensional MBR whose lower-left and upper-right points are
L and U, respectively. (= [{lo,l1, .., ln—1}, {0, U1, ..., un—-1}])
[L,U]" A (low-dimensional) MBR transfromed from [L, U] by the transform T
= [/1, T] (: [{)\0, )\1, ceny )\n—l}, {’Uo, Uly eeny ’Un_1}])
X € [L,U] The sequence X is contained in the MBR [L, U].
(i.e., for every i, I; < z; < uy)

Y (=10 /e,
Transform T1 LUl =IA ] (={vs )

Transform T1

X ()

U(:{u T })
ul R I(EE))
(For every i, A, <x]" <v; holds.)
X(={x°""’x"’1}) Transform T2
L(={ly,rl,}
( 0 1 ) >e X2 (={xgz,m,xz‘%l})
B(={ﬁ0r~"/ﬁm—1})
Transform T2 [LUI™ =[A,B]

A(={otgr0,1})
(For some i, (x/* <oy)v (x> >B;) holds.)

Fig. 1. An MBR-safe transform (7'1) and a non-MBR-safe transform (7'2)

If using an MBR-safe transform, we can drastically reduce the number of
lower-dimensional transformations. In general, previous solutions construct an
MBR after tens ~ thousands of lower-dimensional transformations for individ-
ual sequences [3I719]. In contrast, if using the notion of MBR-safe, we can reduce
the number of lower-dimensional transformations since we transform the high-
dimensional MBR itself to a low-dimensional MBR directly. Figure[2 shows these
two methods of constructing a low-dimensional MBR.. The upper part of the fig-
ure shows an example of using the traditional transform, and the lower part that
of using an MBR-safe transform. As shown in the figure, if using the traditional
transform, we first transform tens ~ thousands of individual sequences to low-
dimensional sequences, and then construct a low-dimensional MBR by containing
the transformed sequences. In contrast, if using the MBR-safe transform, we can
construct a low-dimensional MBR by simply transforming a high-dimensional
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Low-dimensional sequences A low-dimensional MBR

High-dimensional sequences ooe >

/\.'/\/ The traditional transform

A low-dimensional MBR

A high-dimensional MBR

O\~ ‘ ‘MBR-sufe transform

Fig. 2. Two methods of constructing a low-dimensional MBR from high-dimensional
sequences

MBR itself rather than a large number of individual sequences. It means that,
by using the MBR-safe transform, we can reduce the number of transformations
in similar sequence matching.

4 A DFT-Based MBR-Safe Transform

DFT has been most widely used as the lower-dimensional transformation in sim-
ilar sequence matching [TI3[7I89]. DFT transforms an n-dimensional sequence X
to a new n-dimensional sequence Y (= {yo,y1,...,¥n—1}) in a complex number
space, where each complex number y; is defined as the following Eq. (@) [II11]:

n—1

1
theﬂ%”/” 0<i<n-—1. (2)

Yi = Jn

By Euler’s formula [IT] and definition of complex number, we can rewrite Eq. (2)
to Eq. @) of the real part and imaginary part.

n—1

1
Jn Z xpsin(—2mit/n) -4, 0<i<n-—1. (3)
t=0

DFT concentrates most of the energy into the first few coefficients, and thus
only a few coefficients extracted from the transformed point Y are used for
the lower-dimensional transformation [T3]. The following Definition [2l shows the
traditional DFT-based lower-dimensional transformation.

n—1
1
— Jn Z xy cos(—2mit/n) +
t=0

Definition 2. The DFT-based lower-dimensional transformation transforms an
n-dimensional sequence X to a new m(< n)-dimensional sequence XPFT of
{aDFT 2PFT | 2PFT) where each 2277 is obtained by Eq. @). Also, it trans-
forms an n- dlmensmnal MBR [L,U] to a new m-dimensional MBR [L, U|PrET
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whose lower-left and upper-right points are LPFT and UPFT | respectively, i.e.,
[L,U|PFT = [LPFT UPFT] In Eq. @), 0 = —27|i/2]t/nand 0 <i <m — 1.
DR Jn S wpcosf, if i is even; @
x< =
! \}n Sy wpsing, if 4 is odd.

In similar sequence matching, by using the DFT-based lower-dimensional trans-
formation, we transform a high-dimensional sequence with tens ~ hundreds of
dimensions to a low-dimensional sequence with one ~ six dimensions.

The DFT-based lower-dimensional transformation, however, is not MBR-safe.
We give in Example[Il a counterexample to show that it is not MBR-safe.

Ezample 1. Let X be a 4-dimensional sequence of {3.00,2.50,3.50,3.00}, and
[L,U] be a 4-dimensional MBR of L = {2.00,1.00,3.00,2.00} and U = {4.00,
3.00, 5.00,4.00}. Then, for the given X and [L,U], X € [L,U] holds. By using
the DFT-based lower-dimensional transformation, we now transform the given
4-dimensional sequence and MBR to the 2-dimensional sequence and MBR, re-
spectively. Then, by Definition[], we can transform X to a new sequence X P¥'7T of
{6.00, —0.25)fI. Similarly, we can also transform [L, U] to a new MBR [L, U]PFT
where LPFT = {4.00,-0.50} and UPFT = {8.00,—0.50}. Here, we note that
—0.50 < —0.25 £ —0.50, that is, [PFT < oDFT £ oPFT Thus, for the trans-
formed XPFT and [L,U)PFT, XPFT ¢ [L,U]PFT does not hold. It means that
the DFT-based lower-dimensional transformation is not MBR-safe. (]

As noted in Example[I] the DFT-based lower-dimensional transformation is not
MBR-safe, and thus we cannot use it for the lower-dimensional transformation
of MBRs. Therefore, we introduce a DFT-based MBR-safe transform, called
mbrDFT. The following Definition [3] presents a formal definition of mbrDFT.

Definition 3. For an n-dimensional MBR [L, U], mbrDFT is defined as an
operation that constructs an m(< n)-dimensional MBR [L,U]™"PFT whose
lower-left and upper-right points are A and 7, respectively, in Eq. (&). And, for
an n-dimensional sequence X, the mbrDF T-transformed sequence X ™"PFT ig
identical to XPFT. In Eq. @), 0 = —27|i/2|t/n and 0 <i <m — 1.

X = {\/}L ZZ{{ atc.os 0, 1fz %s even; e {\/}L ZZ{{ th(.)S 0, 1fz ?s even; 7
Jn Do bisind, if 4 is odd; n Yoil, desin®, if i is odd;

at = ly,ce = ug, if cos@ > 0;

at = ut,ct = ly, if cos < 0;

by = lt,dy = ug, if sinf > 0;

bt = u,dy =1y, if sinf < 0.

where

()

To guarantee MBR-safety of mbrDFT, we intentionally make A and 7" in Eq. (&)
contain every possible sequence that can be transformed from the original MBR
[L,U]. The following Theorem [ shows that mbrDFT is an MBR-safe transform.

! In DFT, the imaginary part of the first complex number (i.e., mlDFT) is always 0.

Thus, we use {5, 227"} instead of {x"", P} BIF].
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Theorem 1. For an n-dimensional sequence X and an n-dimensional MBR
[L,U], if X € [L,U] holds, then X™™PFT ¢ [L U|™"PFT 4iso holds(X €
[L,U] = XmbrPET ¢ [ U)mbDETY  That is, mbrDFT is MBR-safe.

PrOOF: To show X™PET ¢ [A T](= [L,U]™"™PFT) we need to prove that
A < mlmerFT < v; holds for every i. We now proceed the proof by two cases: 1)
the first case where i of z/"*"PFT is even, and 2) the second one where i is odd.

K3
1) Assume i is even. Then, \; = \}n Z?:_Ol aicosf and v; = \/ln Zf:_ol cicos .
Here, we note that I, < x; < u; holds for every ¢t (0 < ¢ < n —1) since X €
[L,U] holds by the assumption. Thus, if cos@ is positive, l;cos < zicosf <
ugcos 6 holds since I} < xy < uy holds. Similarly, if cos@ is negative, uscos <
xycosf < [icosf holds. And accordingly, Z;:Ol agcos B, which is obtained by
adding [icos @ if cos6 is positive and wuscos@ if cos@ is negative, is less than or
equal to Z?;Ol xicos 6. It means that \/ln Z?;OI arcos @ (= \;) is less than or equal

to J, Sy pcos b (= 2PETY. Analogously, 37—, ¢;cos 6, which is obtained

by adding uscosf if cos@ is positive and l;cosf if cosf is negative, is greater
than or equal to Z?;Ol x¢cos . Thus, \/1” Z?;Ol crcos @ (= v;) is greater than or
equal to \/1“ Z?:_Ol zicos 6 (= xP"PETY Therefore, \; < xP"™PFT < y; holds for

every case where i of z7"*"™PF'T is even.

2) Assume i is odd. We can also prove that \; < ac;“bTDFT < v; holds by the
similar steps described in the case 1) above.

According to the cases 1) and 2), \; < x"*"PFT < 4, holds for every i. Therefore,
mbrDFT is MBR-safe by Definition [ O

The following Example [2] shows that mbrDFT is an MBR-safe transform.

Ezample 2. As in Example[l] let X be a sequence of {3.00,2.50, 3.50, 3.00}, and
[L,U] be an MBR of L = {2.00,1.00, 3.00,2.00} and U = {4.00, 3.00, 5.00, 4.00}.
We now want to transform X and [L, U] using mbrDFT. Then, we can transform
X to anew sequence X ""PFT of £6.00, —0.25}. Similarly, we can also transform
[L,U] to anew MBR [A, 7] (= [L, U™ PFT) where A = {4.00,—1.50} and T =
{8.00,0.50}. Here, we note that both 4.00 < 6.00 < 8.00 (\g < xf?"™PFT < vyg)
and —1.50 < —0.25 < 0.50 (A < 25*"™PFT < 4)9) hold. Thus, for the mbrDFT-
transformed X™0PFT and [L,U)merPET - xmbrDET ¢ [, {]mbrDET holds. Tt
means that mbrDFT is an MBR-safe transform. g

The proposed mbrDFT is optimal (i.e., it constructs the smallest MBR) among
the DFT-based MBR-safe transforms that convert a high-dimensional MBR itself
into a low-dimensional MBR directly. It means that there is no DFT-based MBR-
safe transform whose low-dimensional MBR is smaller than that of mbrDFT. We
omit the proof of optimality due to space limitation.

5 Computational Complexity Analysis

In this section we analyze computational complexity required to construct a
low-dimensional MBR. We analyze two DFT-based transformations: 1) the
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traditional method that constructs an MBR after performing the DFT-based
lower-dimensional transformation for individual sequences (we simply call this
method orgDFT and its complexity orgDFT-complexity) and 2) the proposed
mbrDFT (we call its complexity mbrDF T-complezity).

First, orgDFT-complexity depends on the length n and the number m of se-
quences contained in an MBR. That is, if the computational complexity of a DFT
unit operation for a sequence of length n is O(f(n)), we can obtain orgDFT-
complexity for m sequences as O(mf(n)). Here, we know the complexity of one
DFT operation for a sequence of length n as O(nlogn) [11]. Thus, orgDFT-
complexity for an MBR is to be O(mnlogn). Next, mbrDFT requires only
two DFT operations for two sequences, A and 71, respectively. Thus,
mbrDFT-complexity for an MBR is to be O(nlogn).

In summary, we derive orgDFT-complexity as O(mnlogn) and mbrDFT-
complexity as O(nlogn), respectively. Figure [B(a) shows a graph that presents
orgDFT-complexity and mbrDFT-complexity, where we set the length n of se-
quences to 256 and change the number m of sequences in an MBR from 128 to
1024 by multiples of two. Figure Bl(b) shows another graph, where we set m to
256 and change n from 128 to 1024. As shown in the graphs, mbrDFT-complexity
is much lower than orgDFT-complexity. Note that Y axes in the graphs have the
exponential scale. Also, as m or n increases, the complexity difference between
orgDFT and mbrDFT becomes larger. It means that our mbrDFT is very useful
and practical for the case where an MBR contains a large number of sequences
or the length of sequences is large, i.e., it is suitable for large databases.

8.E+05 8.E+05
—&-orgDFT 8- orgDFT /

6.E+05 || ——=mbrDFT A 6.E405 || ——mbrDFT

4E+05 // 4E+05 //
2.E+05 B/E, 2E+05 /

0.E+00 —@——4——0——& 0.E+00 - —4———4——————4¢
128 256 512 1024 128 256 512 1024

# of sequences per MBR (m) Sequence length (1)

Value (complexity)
Value (complexity)

(a) Complexity comparison when varying . (b) Complexity comparison when varying 1.

Fig. 3. Comparison of orgDFT-complexity and mbrDFT-complexity

6 Performance Evaluation

6.1 Experimental Data and Environment

We have performed extensive experiments using two types of synthetic data sets.
The first data set, used in the previous similar sequence matching works [3I89],
contains a random walk series consisting of one million entries: the first en-
try is set to 1.5, and subsequent entries are obtained by adding a random
value in the range (-0.001,0.001) to the previous one. We call this data set
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WALK-DATA. The second data set contains a synthetic streaming time-series
consisting of one million entries: the series is generated using the function y; =
100+ [sin(0.1 - &;) + 1.0 +4,/1000000] (i = 0..999999) as in [], where we set z; to
the i-th entry of WALK-DATA. We call this data set SINE-DATA.

We generate high-dimensional MBRs by dividing the whole data set into mul-
tiple smaller sequences (i.e., sliding windows in [3)§]). In the experiments, we use
128, 256, 512, and 1024 as the length n and the number m of sequences contained
in an MBR. As in [I], we transform each high-dimensional sequence, i.e., 128— ~
1024—dimensional sequence, to a 1— ~ 4—dimensional sequence (point). It means
that the number of features extracted by the lower-dimensional transformation
is set to one ~ four [I]. As the experimental methods, we compare orgDFT and
mbrDFT.

The hardware platform for the experiment is a PC equipped with an Intel
Pentium IV 2.80 GHz CPU, 512 MB RAM, and a 70.0GB hard disk. The software
platform is GNU/Linux Version 2.6.6 operating system. For the experimental
results, we measure the number of transformations and the elapsed time for
each method. We also show that, by comparing the boundary-length of the
transformed MBRs, the proposed mbrDFT is practically applicable in similar
sequence matching.

6.2 Experimental Results

We have performed three experiments. Experiment 1) measures the number of
transformations and the elapsed time by varying the number m of sequences in
an MBR for the fixed length n of sequences. Experiment 2) performs the same
experiment by varying the length n for the fixed number m. Finally, Experi-
ment 3) compares orgDFT and mbrDFT in the boundary-length of MBRs.

Experiment 1) Figure M shows the experimental results of orgDFT and
mbrDFT. Here, we set the length n of sequences to 256, but change the number
m of sequences in an MBR from 128 to 1024 by multiples of two. We set the
number of extracted features to two as in [I]. In the experiment, we measure
the total number of transformations and the average elapsed time for trans-
forming an MBR. Figure [d(a) shows the numbers of transformations for both
WALK-DATA and SINE-DATA; Figures d(b) and [(c) show the elapsed times
for WALK-DATA and SINE-DATA, respectively. As shown in Figure @(a), our
mbrDFT drastically reduces the number of transformations over orgDFT. It is
because orgDFT has to consider all the individual sequences in an MBR;; in con-
trast, mbrDFT requires only two transformations for an MBR. Figures[l(b) and
A (c) show that mbrDFT also reduces the elapsed time significanlty over orgDFT.
As we analyzed in Figure[Bl(a) in Section 5, the more number of sequences in an
MBR causes the more performance difference between orgDFT and mbrDFT.
In summary, mbrDFT drastically reduces the number of transformations to 1:1,)6
of that for orgDFT on the average, and also significantly improves performance
by 31 times that for orgDFT on the average.
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Fig. 4. Experimental results when varying the number m of sequences in an MBR

Experiment 2) Figure [l shows the results when we set the number m of se-
quences in an MBR to 256, but change the length n of sequences from 128 to
1024 by multiples of two. As in Experiment 1), we measure the total number of
transformations and the average elapsed time for transforming an MBR. From
Figure Bl(a), we note that the numbers of transformations are not changed even
as the length of sequences increases. It is because the numbers are dependent on
the number of sequences in orgDFT or the number of MBRs in mbrDFT, but
are not dependent on the length of sequences in both orgDFT and mbrDFT.
As shown in Figures Bl(b) and Bl(c), mbrDFT significantly reduces the elapsed
time over orgDFT. In particular, as we analyzed in Figure Bl(b) in Section 5,
the larger length of sequences causes the more performance difference between
orgDFT and mbrDFT.

1.E+06 & =3 =2 =2 _ LE+05 1.E+05
] 9 F]
£ =& orgDFT 3 —H-orgDFT 3 ~&= orgDFT
£ 1.E+05[—| —#=mbrDFT 2 8E04| ——mbrDFT £ 8E404] ——mbrDFT
19 k= k=
3 b
5 1.E+04 & 4.E+04 < 4.E+04]
5 < E/z/ < B/z/
— ] Y
#*
E = -
1E+0 " 0.E+00L—e + —¢ 0.E+00-—# +
128 256 512 1024 128 256 512 1024 128 256 512 1024
Sequence length (1) Sequence length (1) Sequence length (1)
(a) Number of transformations (b) The elapsed time (WALK-DATA) (c) The elapsed time (SINE-DATA)

Fig. 5. Experimental results when varying the length n of sequences

Experiment 3) In this experiment, we compare the methods in the average
boundary-length of MBRs. Here, the boundary-length of an MBR is defined as
the sum of the length of each dimension in the MBR, i.e., the boundary-length
of [L,U] is defined as 327"~ (u; — I;). Figure Bl compares orgDFT and mbrDFT
in the average boundary-length of MBRs. Here, we set both the length n and
the number m of sequences in an MBR to 256, but increment the number of
extracted dimensions (features) from one to four. As shown in the figure, the av-
erage boundary-length in mbrDFT is longer than that in orgDFT if the number
of extracted dimensions is greater than two. It is because our mbrDFT considers
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Fig. 6. Comparison of orgDFT and mbrDFT in the average boundary-length of MBRs

an infinite number of every possible sequence that can be contained in a high-
dimensional MBR, while orgDFT does a finite number of real sequences in the
MBR. On the other hand, if the number of extracted dimensions is one, there
is only a little difference (0.2%~2.6%) in the boundary-length. As experimented
in [1], DFT concentrates most of energy into the first dimension, and thus we
can say that our mbrDFT is much more useful if we extract only one or two
dimensions.

7 Conclusions

In this paper we have proposed a formal approach that transforms a high-
dimensional MBR itself to a low-dimensional MBR, directly. We have noted
that most similar sequence matching solutions required a huge number of lower-
dimensional transformations to construct low-dimensional MBRs to be stored
in the index. To solve this problem, we have introduced a new notion of MBR-
safe and proposed MBR-safe transforms that can reduce the number of lower-
dimensional transformations drastically.

We can summarize our work as the following three contributions. First, we
formally defined the notion of MBR-safe. If using the notion of MBR-safe, we
can construct a low-dimensional MBR by transforming a high-dimensional MBR,
itself rather than a large number of individual sequences. Second, we proposed a
DFT-based MBR-safe transform. For this, we first proved the traditional DFT-
based lower-dimensional transformation is not MBR-safe. We then introduced a
new transform, called mbrDFT, and formally proved in Theorem [ it is MBR-
safe. Third, through analysis and experiments, we showed superiority of our
MBR-safe transform.

These results indicate that our MBR-safe transforms will provide a useful
framework for a variety of applications that require the lower-dimensional trans-
formation of high-dimensional MBRs. Therefore, as the further research, we will
try to apply the MBR-safe transform to real applications such as similarity
search, multimedia data retrieval, and GIS.
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Abstract. Free tree, as a special graph which is connected, undirected
and acyclic, has been extensively used in bioinformatics, pattern
recognition, computer networks, XML databases, etc. Recent research
on structural pattern mining has focused on an important problem of
discovering frequent free trees in large graph databases. However, it can
be prohibitive due to the presence of an exponential number of frequent
free trees in the graph database. In this paper, we propose a computa-
tionally efficient algorithm that discovers only closed frequent free trees
in a database of labeled graphs. A free tree t is closed if there exist
no supertrees of t that has the same frequency of ¢t. Two pruning algo-
rithms, the safe position pruning and the safe label pruning, are proposed
to efficiently detect unsatisfactory search spaces with no closed frequent
free trees generated. Based on the special characteristics of free tree, the
automorphism-based pruning and the canonical mapping-based pruning
are introduced to facilitate the mining process. Our performance study
shows that our algorithm not only reduces the number of false positives
generated but also improves the mining efficiency, especially in the pres-
ence of large frequent free tree patterns in the graph database.

1 Introduction

Recent research on frequent pattern discovery has progressed from mining item-
sets and sequences to mining structural patterns including (ordered, unordered,
free) trees, lattices, graphs and other complicated structures. Among all these
structural patterns, graph, a general data structure representing relations among
entities, has been widely used in a broad range of areas, such as bioinformatics,
chemistry, pattern recognition, computer networks, etc. In recent years, we have
witnessed a number of algorithms addressing the frequent graph mining prob-
lem [591416]. However, discovering frequent graph patterns comes with expensive
cost. Two computationally expensive operations are unavoidable: (1) to check if
a graph contains another graph (in order to determine the frequency of a graph
pattern) is an instance of subgraph isomorphism problem, which is NP-complete
[3]; and (2) to check if two graphs are isomorphic (in order to avoid creating a
candidate graph for multiple times) is an instance of graph isomorphism prob-
lem, which is not known to be either P or NP-complete [3].

With the advent of XML and the need for mining semi-structured data, a
particularly useful family of general graph — free tree, has been studied and

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 91-{I02] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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applied extensively in various areas such as bioinformatics, chemistry, computer
vision, networks, etc. Free tree — the connected, undirected and acyclic graph, is
a generalization of linear sequential patterns, and hence reserves plenty of struc-
tural information of databases. At the same time, it is a specialization of general
graph, therefore avoids undesirable theoretical properties and algorithmic com-
plexities incurred by graph. As the middle ground between two extremes, free
tree has provided us a good compromise in data mining research [812].

Similar to frequent graph mining, the discovery of frequent free trees in a
graph database shares a common combinatorial explosion problem: the number
of frequent free trees grows exponentially although most free trees deliver nothing
interesting but redundant information if all of them share the same frequency.
This is the case especially when graphs of a database are strongly correlated.

Our work is inspired by mining closed frequent itemsets and sequences in [1].
According to [TITT], a frequent pattern 7 is closed if there exists no proper super-
pattern of Z with the same frequency in the dataset. In comparison to frequent
free trees, the number of closed ones is dramatically small. At the same time,
closed frequent free trees maintain the same information (w.r.t frequency) as
that held by frequent free trees with less redundancy and better efficiency.

There are several previous studies on discovering closed frequent patterns
among large tree or graph databases. CMTreeMiner [I] discovers all closed
frequent ordered or unordered trees in a rooted-tree database by traversing an
enumeration tree, a special data structure to enumerate all frequent (ordered or
unordered) subtrees in the database. However, some elegant properties of or-
dered (unordered) trees do not hold in free trees, which makes infeasible to apply
their pruning techniques directly to mine closed frequent free trees. CloseGraph
[10] discovers all closed frequent subgraphs in a graph database by traversing
a search space representing the complete set of frequent subgraphs. The novel
concepts of equivalent occurrence and early termination help CloseGraph prune
certain branches of the search space which produce no closed frequent subgraphs.
We can directly use CloseGraph to mine closed frequent free trees because free
tree is a special case of general graph, but CloseGraph will introduce a lot of in-
efficiencies. First, all free trees are computed as general graphs while the intrinsic
characteristics of free tree are omitted; Second, the early termination may fail
and CloseGraph may miss some closed frequent patterns. Although this failure
of early termination can be detected, the detection operations should be applied
case-by-case, which introduce a lot of complexities.

In this paper, we fully study the closed frequent free tree mining problem and
develop an efficient algorithm, CFFTree which is short for Closed Frequent, Free
Tree mining, to systematically discover the complete set of closed frequent free
trees in large graph databases. The main contributions of this paper are: (1) We
first introduce the concept of closed frequent free trees and study its properties
and its relationship to frequent free trees; (2) Our algorithm CFFTree depth-
first traverses the enumeration tree to discover closed frequent free trees. Two
original pruning algorithms, the safe position pruning and the safe label prun-
ing are proposed to prune search branches of the enumeration tree in the early
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stage, which is confirmed to output no desired patterns; (3) Based on the intrin-
sic characteristics of free tree, we propose the automorphism-based pruning and
the canonical mapping-based pruning to alleviate the expensive computation of
equivalent occurrence sets and candidate answer sets during the mining process.
We carried out different experiments on both synthetic data and real applica-
tion data. Our performance study shows that CFFTree outperforms up-to-date
frequent free mining algorithms by a factor of roughly 10. To the best of our
knowledge, CFFTree is the first algorithm that, instead of using post-processing
methods, directly mines closed frequent free trees from graph databases.

The rest of the paper is organized as follows. Section 2] provides necessary
background and detailed problem statement. We study the closed frequent free
tree mining problem in Section Bl and propose a basic algorithmic framework
to solve the problem. Advanced pruning algorithms are presented in Section Fl
Section Bl formulates our algorithm, CFFTree. In Section [G] we report our per-
formance study and finally, we offer conclusions in Section [7}

2 Preliminaries

A labeled graph is defined as a 4-tuple G = (V, E, X, \) where V is a set of
vertices, F is a set of edges (unordered pairs of vertices), X' is a set of labels,
and A is a labeling function, A : VU E — X that assigns labels to vertices and
edges. A free tree, denoted ftree, is a special undirected labeled graph that is
connected and acyclic. Below, we call a ftree with n vertices a n-ftree.

Let ¢t and s be two ftrees, and g be a graph. ¢ is a subtree of s (or s is the
supertree of t), denoted ¢t C s, if ¢ can be obtained from s by repeatedly removing
vertices with degree 1, a.k.a leaves of the tree. Similarly, ¢ is a subtree of a graph
g, denoted t C g, if t can be obtained by repeatedly removing vertices and edges
from ¢. Ftrees t and s are isomorphic to each other if there is a one-to-one
mapping from the vertices of ¢ to the vertices of s that preserves vertex labels,
edge labels, and adjacency. An automorphism is an isomorphism that maps from
a ftree to itself. A subtree isomorphism from t to ¢ is an isomorphism from ¢ to
some subtree(s) of g.

Given a graph database D = {g1, g2, ..., gn} where g; is a graph (1 <i < N).
The problem of frequent ftree mining is to discover the set of all frequent ftrees,
denoted F'S, where t € F'S iff the ratio of graphs in D that has ¢ as its subtree
is greater than or equal to a user-given threshold ¢. Formally, let ¢ be a ftree
and g; be a graph. We define

1 ift C g
s(t,gi) = {0 otherwise .
and
o(t,D) =3 s(t.g0) )
9:€D

where o(t,D) denotes the frequency or support of t in D. The frequent ftree
mining problem is to discover the ftree set F'S of D which satisfies

FS={t]|o(t,D)>¢N} (3)
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The problem of closed frequent ftree mining is to discover the set of frequent
ftrees, denoted C'F'S, where t € C'FS iff ¢ is frequent and the support of ¢ is
strictly larger than that of any supertree of t. Formally, the closed frequent ftree
mining problem is to discover the ftree set C'F'S of D which satisfies

CFS={t|te FSAVt Dt,o(t,D)>c(t' D)} (4)

Since CFS contains no ftree that has a supertree with the same support, we
have CFS C F'S.

3 Closed Frequent Ftree Mining: Proposed Solutions

Based on the definition in Eq.[#]), a naive two-step algorithm of discovering
CFS from D can be easily drafted. First, using current frequent ftree mining
algorithms to discover F'S from D; Second, for each t € F'S, examining all ¢’ €
F'S where ¢t C t' to tell whether ¢’ satisfies o(t',D) < o(t, D). This algorithm is
straightforward, but far from efficient. It indirectly discovers C'F'S by computing
F'S in the first place whose size is exponentially larger than that of CFS. The
postprocessing operation of filtering non-closed frequent ftrees from FS also
incurs unnecessary computation. We want an alternative method which directly
computes C'F'S instead of computing F'S in advance, i.e., under the traditional
search space for mining frequent ftrees, efficient pruning algorithms should be
proposed to detect branches that do not correspond to closed frequent ftrees
as early as possible, and prune them to avoid unnecessary computation, which
finally facilitate the total mining process.

In [12], we demonstrate F3TM, a fast frequent ftree mining algorithm, which
outperforms up-to-date algorithms FreeTreeMiner[2)§] by an order of magni-
tude. In F3TM, an enumeration tree representing the search space of all frequent
ftrees is built by a pattern-growth approach. Given a frequent n-ftree t, the
potential frequent (n 4 1)-ftree t’ originated from ¢ is generated as

t'=toepv,veX (5)

where ef means pattern growth can be conducted on the extension frontier of
t instead of each vertex of ¢, while at the same time ensuring the completeness
of frequent ftrees discovered from the graph database . Figure [l illustrates the
extension frontier of a ftree, which is composed of vertices 3, 4, 5 and 6, and the
candidate generation of ¢, based on Eq.

For each frequent ftree in the enumeration tree discovered by F3TM, we can
check the closeness condition in Eq. dl Given a frequent n-ftree t, its immediate
supertree set, denoted CS(t), which contains all (n + 1)-ftrees t' D ¢ can be
generated as

CSHt)={t' |t =toyv,ve€ X} (6)
where x means v can be grown on any vertex of ¢, which is shown in Figure
t’s immediate frequent supertree set, denoted F'S(t), which contains all frequent
(n+ 1)-ftrees t' O t can be generated as

FS@t)={t'|t' € CS(t) Ao(t,D) > ¢N} (7)
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Fig. 1. t' =topv Fig.2. t' =to, v

Given a frequent ftree t' € FS(t), we denote the vertex which is grown on ¢ to
get ' as (t' —t), and the vertex of ¢t at which (¢’ —t) is grown on as p, i.e., the
parent of (t' —t) in t'.

The basic algorithmic framework for mining closed frequent ftrees can be
formalized as follows: if for every ¢ € FS(t), o(t',D) is strictly smaller than
o(t,D), then ¢ is closed; Otherwise, ¢ is non-closed, i.e., we can tell the closeness
of t by checking the support values of all its immediate frequent supertrees in
FS(t) during the traversal of the enumeration tree for mining frequent ftrees.

4 Pruning the Search Space

In the previous section, we traverse the enumeration tree to discover all frequent
ftrees in a graph database. However, the final goal of our algorithm is to find
only closed frequent ftrees. Therefore, it is not necessary to grow the complete
enumeration tree, because under certain conditions, some branches of the enu-
meration tree are guaranteed to produce no closed frequent ftrees and therefore
can be pruned efficiently. In this section, we introduce algorithms that prune
unwanted branches of the search space.

4.1 Equivalent Occurrence

Given a ftree t and a graph g € D, let f(t,g) represents a subtree isomorphism
from t to g. f(t, g) is also referred to as an occurrence of ¢t in g. Notice that ¢ can
occurs more than once in g. Let w(t, g) denote the number of occurrences of ¢ in g.
The number of occurrences of ¢ in a graph database D can be formally defined as

Definition 1. Given a ftree t and a graph database D = {g1,92,...,9n}, the
number of occurrence of t in D is the sum of the number of subtree isomorphisms
of t in g; € D, i.e., Zij\ilw(t,gi), denoted by O(t, D).

Suppose a ftree t' = t o, v, f is a subtree isomorphism of ¢ in g and f’ is a
subtree isomorphism of ¢’ in g. If Jp, p is subtree isomorphism of ¢ in t/, i.e.,
Yo, f(v) = f'(p(v)), we call t and t' simultaneously occur in graph g. Intuitively,
as we can derive ¢’ from ¢ by ' = to, v, we can get ¢ in the same pattern-growth
way from ¢ in g. We denote the number of such simultaneous occurrences of t'
w.r.t t in g by w(t,t’, g). Similarly, the number of simultaneous occurrences of
t' w.r.t t in D is defined as

Definition 2. Given a ftree t’ = to,v and a graph database D={g1,92,...,9n},
the number of simultaneous occurrence of t' w.r.t. t in D is the sum of the number
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of simultaneous occurrences of t' w.r.t t in g; € D, i.e., Zf\il w(t,t', gi), denoted
by SO(t,t', D).

Definition 3. Given t' =t o, v and a graph database D = {g1,92,...,9n}, if
O(t,D) = SO(t,t', D), we say that t and t' have equivalent occurrences.

Lemma 1. For a frequent ftree t in the enumeration tree, if there exists a t' €
FS(t) such that (1)t and t' have equivalent occurrences; (2) the vertex (t' —t)
18 not grown on the extension frontier of any descendants of t, including t, in
the enumeration tree, then (1)t is not a closed frequent ftree and (2) for each
child t" of t in the enumeration tree, there ewists at least one supertree t'"" of t”,
such that t""" and t" have equivalent occurrences.

Proof. The first statement can be easily proved. Since ¢ and ¢’ have equivalent
occurrences in D, then O(t', D) = O(t, D). For the second statement, we notice
that (¢’ —t) occurs at each occurrence of ¢ in D, so it occurs at each occurrence of
t” in D. In addition, the vertex (¢ — t) never be grown on the extension frontier
of any descendant of ¢, so it will not be a vertex of ¢ (Notice " is a child of ¢ in
the enumeration tree by growing a vertex on t¢’s extension frontier). Therefore,
we can obtain ¢ by adding (¢ —t) on t”, so that ¢ and ¢ have equivalent
occurrences.

By inductively applying Lemmal[llto ¢ and all ¢’s descendants in the enumeration
tree, we can conclude that all branches originated from ¢ in the enumeration tree
are guaranteed to produce no closed frequent ftrees. However, the conditions
mentioned in Lemmal[I] especially the condition (2) is hard to be justified. Since
when mining frequent ftree t, we have no information of all ¢’s descendants in the
enumeration tree. The following sections will present more detailed techniques
to prune the search space.

4.2 The Safe Position Pruning
Given a ftree t and a vertex v € t, the depth of v can be defined as follows

1 if v is a leaf
MiNyet,u is child of v{depth(u) + 1} otherwise

depth(v) = { (8)
Intuitively, the depth of a vertex v is the minimum number of vertices from v
to the nearest leaf of ¢. For a frequent ftree t' € FS(t) where ¢ and ¢’ have
equivalent occurrences, the vertex (¢ — ¢) can be grown at different positions,
i.e., there are the following possibilities for the position of p in ¢. (1)depth(p) < 2
and p is on the extension frontier of ¢; (2) depth(p) < 2 but p is not on the
extension frontier; (3) depth(p) > 2.

If p occurs in position (1), vertex(t’ — ¢) is grown on the extension frontier of
t. If p occurs in position (2), there are possibilities that for some descendant ¢”
of t in the enumeration tree, the vertex p can still be on the extension frontier of
t”. A example is shown in FigureBl In frequent ftree t, depth(p) = 2 and p is not
located on the extension frontier. After the vertex a is grown on the extension
frontier (vertex b), we get another frequent ftree ¢’ in which p is now located on
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Fig. 3. A Special Case in Position (2) Fig. 4. The Safe Label Pruning

the extension frontier. So the first two possible positions of p are unsafe when

growing vertex (¢' — t), which disallows the conditions mentioned in Lemma [Tl
The following theorem shows that only position (3) of p is safe to grow the

vertex (¢’ — t), while not violating the conditions mentioned in Lemma [T

Theorem 1. For a frequent ftree t' € FS(t) such that t and t' have equivalent
occurrences in D. If depth(p) > 2, then neither t nor any t’s descendants in the
enumeration tree can be closed.

Proof. Since for every vertex u on the extension frontier of a ftree, it is located
at the bottom two levels, i.e., depth(u) < 2. If depth(p) > 2, the vertex p can
never appear on the extension frontier of any ftree, i.e., the vertex (¢’ — t) will
not be grown on the extension frontier of any descendant of ¢, including ¢, in the
enumeration tree. According to Lemma [Tl the branches originated from ¢ can
not generate closed frequent ftrees.

The pruning algorithm mentioned in Theorem [ is called the safe position prun-
ing, since the vertex (¢’ — t) can only be grown on a safe vertex p € t, where
depth(p) > 2. Given a n-ftree, the depth of every vertex of ¢ can be computed in
O(n), so the safe position pruning is quite efficient to testify whether a certain
branch in the enumeration tree should be pruned or not.

4.3 The Safe Label Pruning

If p is on the extension frontier of ¢, obviously, depth(p) < 2. We can not prune
t from the enumeration tree. However, depending on the vertex label of (¢’ —¢),
we can still possibly prune some children of ¢ in the enumeration tree.

Theorem 2. For a frequent ftree t' € FS(t) such that t and t' have equivalent
occurrences in D, if p is located on the extension frontier of t, we do not need
to grow t by adding to p a new vertex with label lexicographically greater than
(t' —t).

Proof. For any t” € FS(t) such that p is the parent of(t” — ¢) and (¢ —t) is
lexicographically greater than (¢’ —t), a ftree t"" =t" o, (t' — t) have equivalent
occurrence with ¢’ and ¢ € FS(t"). Note t” o, (' — t) means growing vertex
(' —t) on p of ftree t”. According to Lemmal[Il ¢’ is not closed. And for every
descendant of ¢ in the enumeration tree, (¥’ — t) never be grown on its exten-
sion frontier. Because during frequent ftrees mining, we generate candidates in
a lexicographical order. Since (¢ — t) is lexicographically greater than (¢ — t),
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the vertex (' —t) will not be reconsidered to be grown on ¢ and all t""’s descen-
dants in the enumeration tree. According to Lemma [l neither ¢ nor any of its
descendants can be closed.

The pruning algorithm mentioned in Theorem 2 is called the safe label pruning.
The vertex label of (t' —t) is safe because all vertices with labels lexicographically
greater than (¢’ —t) can be exempted from growing on p of ¢, and all descendants of
corresponding ftreesin the enumeration tree are also pruned. An example is shown
in Figured p is located on the extension frontier of t and v = (¢’ —t). If v"’s label
is lexicographically greater than v’s label, the frequent ftree ¢/ = t o), v" and the
frequent ftree t"” = t” o, v have equivalent occurrences, so that t” is not closed.
Similarly, all #"’s descendants in the enumeration tree are not closed, either.

4.4 Efficient Computation of FS(t)

Based on the above analysis, both candidate generation and closeness test of the
frequent ftree, t, need to compute F'S(t). Depending on if ¢ can be pruned from
the enumeration tree during closed frequent ftree mining, we can divide F'S(t)
into the following mutually exclusive subsets:

EO(t) = {t' € FS(t) | t' and t have equivalent occurrences}
EN(t)={t' € FS(t) | o(t,D) = o(t', D)}
F@)={t' € FS(t) | t' is frequent}

Based on Theorem [Ml and Theorem [ the set FO(t) can be further divided
into the following mutually exclusive subsets:

EO:(t) = {t' € EO(t) | p € t is safe}
EO»(t) = {t' € EO(t) | p is on the extension frontier of ¢}
EOs(t) = EO(t) — EO1(t) — EO2(t)

When computing the sets mentioned above, we map ¢ to each occurrence in
gi € D and select the possible vertex (¢’ — t) to grow. However, this procedure
is far from efficient since a lot of redundant ¢’ are generated. Now we study how
to speed up the computation of F'S(t) based on the characteristics of ftree. The
detailed analysis can be found in [12].

Automorphism-based Pruning: In the example shown in Figure[B] The left-
most ftree t is a frequent 7-ftree, where vertices are identified with a unique
number as verter id. When growing a new vertex v on vertex 3 of ¢, we get a
8-ftree t' € CS(t), shown in the middle of Figure Bl However, when growing
v on vertex 5 of ¢, we get another 8-ftree t"” € CS(t), shown on the right of
Figure Bl Notice #' = t” in the sense of ftree isomorphism, so t”” can be pruned
when computing F'S(t).

Based on the observation mentioned above, We propose an automorphism-
based pruning algorithm to efficiently avoid redundant generation of ftrees in
FS(t). Given a ftree, all vertices can be partitioned into different equivalence
classes based on ftree automorphism. Figure [l shows how to partition vertices
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of ¢ in Figure [l into four equivalence classes. When computing F'S(t), only one
representative for each equivalence class of ¢ is considered, instead of growing
vertices on every position within an equivalence class.

Canonical Mapping-based Pruning: When computing F'S(¢), we maintain
mappings from t to all its occurrences in g; € D. However, there exist redundant
mappings because of ftree automorphism. Given a n-ftree t, and assume that
the number of equivalence classes of ¢ is ¢, and the number of vertices in each
equivalence class C; is n;, for 1 < i < ¢. The number of mappings from ¢ to an
occurrence in g; is computed as w(t, g;) = [[;_, (n;)!. When either the number
of equivalence classes, or the number of vertices in some equivalence class is
large, w(t, g;) can be huge. However, among all mappings describing the same
occurrence of ¢ € g;, one out of [[_, (n;)! mappings is selected as canonical
mapping and all computation of FS(t) is based on the canonical mapping of ¢ in
D. While other ([];_, (n;)!—1) mappings can be pruned so that the computation
of FS(t) can be greatly facilitated.

5 The CFFTree Algorithm

In this section, we summarize our CFFTree algorithm, which is short for Closed
Frequent Ftree Mining. Algorithm 1 illustrates the framework of CFFTree. The
algorithm simply calls CF-Mine which recursively mines closed frequent ftrees of
a graph database by a depth-first traversal on the enumeration tree.

Algorithm [2 outlines the pseudo-code of CF-Mine. For each frequent ftree t,
CFFTree check all candidate frequent ftree t' = ¢ o, v, to obtain SO(t,t', D),
which is useful to compute EO(t) (Line 1) and EN(t) (Line 2). However, for
t' € F(t), CFFTree only grows t on its extension-frontier, i.e. ' = ¢ o,y v, which
ensures the completeness of frequent ftrees in D (Line 7-12). Automorphism-
based pruning and canonical mapping-based pruning can be applied to facilitate
the computation of the three sets EO(t), EN(t) and F'(t). For the frequent ftree
t, if there exists ¢ € EO1(t), then neither ¢ nor any of ¢’s descendants in the
enumeration tree can be closed, and hence can be efficiently pruned (Line 3-4).
If EO1(t) = 0 but there exists t’ € FO2(t), although we cannot prune ¢ from the
enumeration tree, we can apply Theorem ] to prune some children of ¢ in the
enumeration tree (Line 11-12). If EO(t) = (), then no pruning is possible and we
have to compute EN(t) to determine the closeness of ¢, i.e., the naive algorithm
mentioned in Section Bl (Line 2). If EN(t) # 0, t is not closed, otherwise, ¢
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Algorithm 1. CFFTree (D, ¢)

Input: A graph database D, the minimum support threshold ¢
Output: The closed frequent ftrees set CF

1: CF « 0

2: F « frequent 1-ftrees;

3: for all frequent 1-ftree t € F do

4:  CF-Mine(t, CF, D, ¢);

5: return CF

Algorithm 2. CF-Mine (t, CF, D, ¢)
Input: A frequent ftree t, the set of closed frequent ftrees, CF, A graph database D
and the minimum support threshold ¢
Output: The closed frequent ftrees set CF
1: Compute EO(t);
2: if FO(t) = 0 then Compute EN (¢);
3: if ' € EO4(t) then

4:  return; // The safe position pruning;

5: else

6:  F(t) 0

7 for each equivalence class ec; on the extension frontier of ¢t do

8: for each valid vertex v which can be grown on ec; of t do

9 t' + to.f v, where p, a representative of ec;, is v’s parent

10 if support(t') > ¢|D| then

11: if ;" € EOx(t), where (t” —t) is p and the label of (t' — t) is lexico-
graphically greater than that of (t/ —t) then

12: F(t) « F(t)U{t'} // the safe label pruning

13:  for each frequent ¢’ in F(¢) do

14: CF-Mine(t', CF, D, ¢)

15:  if EO(t) =0 and EN(t) = 0 then

16: CF—CFU{t}

is closed (Line 15-16). The set F(¢) is computed by extending vertices on the
extension frontier of ¢, which grows the enumeration tree for frequent ftree mining
(Line 8-12). This procedure proceeds recursively (Line 13-14) until we find all
closed frequent ftrees in the graph database.

6 Experiments

In this section, we report a systematic performance study that validates the
effectiveness and efficiency of our closed frequent free tree mining algorithm:
CFFTree. We use both a real dataset and a synthetic dataset in our experiments.
All experiments were done on a 3.4GHz Intel Pentium IV PC with 2GB main
memory, running MS Windows XP operating system. All algorithms are imple-
mented in C++ using the MS Visual Studio compiler. We compare CFFTree
with F3TM plus post-processing, thus, the performance curve mainly reflects the
effectiveness of pruning techniques mentioned in Section @l
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Fig. 8. Mining patterns in synthetic datasets

The real dataset we tested is an AIDS antiviral screen chemical compound
database from Developmental Theroapeutics Program in NCI/NIH. The database
contains up to 43,905 chemical compounds. There are total 63 kinds of atoms
in this database, most of which are C, H, O, S, etc. Three kinds of bonds are
popular in these compounds: single-bond, double-bond and aromatic-bond. We
take atom types as vertex labels and bond types as edge labels. On average, com-
pounds in the database has 43 vertices and 45 edges. The graph of maximum
size has 221 vertices and 234 edges.

Figure [[(a) shows the number of frequent patterns w.r.t. the size of patterns
(vertex number). We select 10000 chemical compounds from the real database
and set the minimum threshold ¢ to be 10%. As shown, most frequent and closed
frequent ftrees have vertices ranging from 8 to 17. While the number of small
ftrees with vertex number less than 5 and large ftrees with vertex number greater
than 20 is quite limited. Figure[(b) shows the number of patterns of interest with
¢ varying from 5% to 10% and the running time is shown in Figure [7(c) on the
same dataset. As we can see, CFFTree outperforms F3TM by a factor of 10 in aver-
age and the ratio between frequent ftrees and closed ones is close from 10 to 1.5. It
demonstrates that closed pattern ming can deliver more compact mining results.

We then tested CFFTree on a series of synthetic graph databases, which are
generated by the widely-used graph generator [5]. The synthetic dataset is char-
acterized by different parameters, which is described in detail in [5]. Figure[|(a)
shows the number of patterns of interest with ¢ varying from 5% to 10% and
the running time is shown in Figure B(b) for the dataset D10000/107°30V50.
Compared with the real dataset, CFFTree has a similar performance gain in
this synthetic dataset. We then test the mining performance by changing the
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parameter 7' in the synthetic data, while other parameters keep fixed. The ex-
perimental results are shown in Figure B(c). Again, CFFTree performs better
than F3TM.

7 Conclusion

In this paper, we investigate the problem of mining closed frequent ftrees from
large graph databases, a critical problem in structural pattern mining because
mining all frequent ftrees are inherently inefficient and redundant. Several new
pruning algorithms are introduced in this study including the safe position prun-
ing and the safe label pruning to efficiently prune branches of the search space.
The automorphism-based pruning and the canonical mapping-based pruning are
applied in the computation of candidate sets and equivalent occurrence sets,
which dramatically facilitate the total mining process. A CFFTree algorithm is
implemented and our performance study demonstrates its high efficiency over
the up-to-date frequent ftree mining algorithms. To our best knowledge, this is
the first piece of work on closed frequent ftree mining on large graph databases.
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SAR, China (No. 418206).
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Abstract. We study the problem of finding time-delayed associations
among types of events from an event dataset. We present a baseline algo-
rithm for the problem. We analyse the algorithm and identify two meth-
ods for improving efficiency. First, we propose pruning strategies that can
effectively reduce the search space for frequent time-delayed associations.
Second, we propose the breadth-first* (BF*) candidate-generation order.
We show that BF*, when coupled with the least-recently-used cache re-
placement strategy, provides a significant saving in I/O cost. Experiment
results show that combining the two methods results in a very efficient
algorithm for solving the time-delayed association problem.

1 Introduction
Developments in sensor network technology have attracted vast amounts of re-

search interest in recent years [TI2I3IGI7I8I9]. One of the research topics related to
sensor networks is to find correlations among the behaviour of different sensors.

A AAA B BB c cC
[d e o o [ [ 2 ) L] ® > time
0 3 4 5 7 9 10 13 15

(a) Network topology (b) Alerts issued by a network monitoring system

Fig. 1. An example showing a network monitoring system

Consider a network monitoring system designed for collecting traffic data of
a network of switches and links as shown in Figure In the figure, nodes
represent switches, whereas edges are links connecting switches. Under normal
conditions, the time needed to pass through a link is represented by the number
on the corresponding edge. When the traffic at Switch X exceeds certain capac-
ity, a congestion alert is raised. Figure shows an example of alert signals.

* This research is supported by Hong Kong Research Grants Council Grant HKU
7138/04E.
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By analysing an alert sequence, one may discover interesting correlations
among different types of alerts. For example, one may find that a Switch-A alert
is likely followed by a Switch-B alert within a certain time period. One may also
find that if such an A-B pattern occurs, a Switch-C alert is likely to occur soon
after. Such association information would be useful, for example, in congestion
prediction, which could be applied to intelligent traffic redirection strategies.

In this paper, we model correlations of events in the form of time-delayed
associations. In our model, an event e is a pair (E,, t.) where E, is its type and
te is the time at which e occurs. We are interested in associations among events
whose occurrences are time-constrained. A time-delayed association thus takes
the form I-"*L.J, where I, J are event types and u, v are two time values such
that 0 < u < v. The association captures the observation that when an event 4
of type I occurs at some time t;, it is likely that an event j of type J occurs at
time ¢; such that ¢; +u < t; < t; +v. If such an event j exists, event 7 is said to
match the association and we call j a consequence of i w.r.t. the association.

Associations can be “chained” to form longer associations that involve more
than two event types. Chained associations can help detecting risk of unfavourable
conditions early. Here, we can treat an association I-“"LJ as a complex event
type I. An association between a complex event type I and an event type K has
the form 1L K. Intuitively, such an association refers to the observation that
if an event of type I occurs and is followed by one or more event of type J within
a certain constrained time period, then at least one of the type-J consequences
is likely followed by a type-K event within a constrained time period.

In [5], Mannila et al proposed the concept of episode, which is an ordered
list of events. They proposed the use of minimal occurrences to find episode
rules in order to capture temporal relationships between different event types. A
minimal occurrence of an episode is a time interval [ts,t.) such that the episode
occurs in the interval but not in any proper sub-interval of [ts,¢.). Let o and 3
be two episodes. An episode rule has the form afw;] = Sws], which specifies
the following relationship: “if @ has a minimal occurrence in the interval [tg, t.)
such that ¢, — ts < wy, then there is a minimal occurrence of ( in [ts,t.) such
that ¢, —ts; < ws”. The goal is to discover episodes and episode rules that occur
frequently in the data sequence.

In a sense, our problem is similar to episode discovery in that we are looking
for frequently occurring event sequences. However, we remark that the use of
minimal occurrence to define the occurrence of an episode might in some cases
fail to reflect the strength of an association. As an example, consider Figure
again. It is possible that the three type-B events that occur at time ¢t = 7,9 and
10 are “triggered” respectively by the three preceding A’s that occur at t = 3,4
and 5. Hence, the association A — B has occurred three times. However, only
one period ([5,8)) is qualified as a minimal occurrence of the episode A — B. In
other words, out of all 4 occurrences of A in the figure, there is only 1 occurrence
of the episode A — B, even though 3 of the A’s have triggered B.

A major difference between our definition of time-delayed association and the
episode’s minimal occurrence approach is that, under our approach, every event
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that matches an association counts towards the association’s support. This fairly
reflects the strength of correlations among event types. Also, our definition allows
the specification of a timing constraint [u, v] between successive event types in
an association. This helps removing those associations that are not interesting.
For example, if it takes at least 2 time units for a packet to pass through a
switch, then any type-B alert that occurs 1 time unit after a type-A alert should
not count towards the association A — B (See Figure[Il). We can thus use the
timing constraint to filter false matches. The minimal occurrence approach used
in episode does not offer such flexibility.

A straightforward approach to finding all frequent associations is to generate
and verify them incrementally. First, we form all possible length-2 associations
X — Y, where X and Y are any event types in the data sequence. We then
scan the data to count the associations’ supports. Those associations with high
supports are considered frequent. Next, for each frequent association X — Y, we
consider every length-3 extension, i.e., we append every event type Z to X — Y
forming (X — Y) — Z. The support of those length-3 associations are counted
and those that are frequent will be used to generate length-4 associations, and so
on. The process stops when we can no longer obtain any new frequent sequences.
In Section [B] we will show how the above conceptual procedure is implemented
in practice. In particular, we show how the computational problem is reduced
to a large number of table joins. We call this algorithm the baseline algorithm.

The baseline algorithm is not particularly efficient. We address two methods to
improve its efficiency. First, the baseline algorithm extends a frequent association
I — Y by considering all possible extensions (I — Y) — Z. Many of such
extensions could be infrequent and the effort spent on counting their supports
is wasted. A better strategy is to estimate upper bounds of the associations’
supports and discard those that cannot meet the support requirement. Second,
as we will explain later, the baseline algorithm generates (I — Y) — Z by
retrieving and joining the tables associated with two sub-associations, namely,
I - Y and Y — Z. Since the number of such associations and their associated
tables is huge, the tables will have to be disk-resident. A caching strategy that
can avoid disk accesses as much as possible would thus have a big impact on the
algorithm’s performance. In this paper we study an interesting coupling effect
of a caching strategy and an association-generation order.

The rest of the paper is structured as follows. We give a formal definition of
our problem in Section2l In Section[3 we discuss some properties of time-delayed
associations and propose a baseline algorithm for the problem. In Section [ we
discuss the pruning strategies and the caching strategies. We present experiment
results in Section Bl and conclude the paper in Section [6

2 Problem Definition

In this section we define the problem of finding time-delayed associations from
event datasets. We define an event e as a 2-tuple (E., t.) where E. is the event
type and t. is the time e occurs. Let D denote an event dataset and £ denote
the set of all event types that appear in D. We define a time-delayed association
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as a relation between two event types I,J € &£ of the form [ Lol 7 We call T
the triggering event type and J the consequence event type of the association.
Intuitively, 7 J captures the observation that if an event  such that E; = I
occurs at time t;, then it is “likely” that there exists an event j so that E; = J
and t;+u < t; < t;+v, where v > u > 0. The likelihood is given by the confidence
of the association, whereas the statistical significance of an association is given
by its support. We will define support and confidence shortly.

For an association r = I-""L J an event i is called a match of r (or i matches )
if B; = I and there exists another event j such that £; = J and ¢; +u < ¢; <
t; +v. The event j here is called a consequence of r. We use the notations M, to
denote the set of all matches of r, ¢, ; to denote the set of all consequences that
correspond to a match ¢ of r and m,. ; to denote the set of all matches of r that
correspond to a consequence j. Also, we define Q, = J¢; Vi € M,.. That is, Q,
is the set of all events that are consequences of r. The support of an association
r is defined as the ratio of the number of matching events to the total number of

events (i.e., If\gil ). The confidence of r is defined as the fraction ||]‘1;[;||, where Dy

is the set of all type-I events in D. We use the notations supp(r) and conf(r) to
represent the support and confidence of 7, respectively. Finally, the length of an
association r, denoted by len(r), is the number of event types contained in r.
We can extend the definition to relate more than two event types. Consider an
association r = 1L J as a complex event type I, an association between I and
an ordinary event type K is of the form r’ = [V K. Here, I is the triggering
event type and K is the consequence event type. Intuitively, the association says
that if an event of type I is followed by one or more event of type J within
certain time constraints v and v, then at least one of the J’s is likely to be
followed by a type K event. A match for the association 7’ is a match ¢ for r
such that, for some j where j € ¢, ;, there exists an event k such that Ej, = K
and t; +u <t < t; +v. We say that event k£ is a consequence of event ¢
w.r.t. the association 7. The support of r’ is defined as the fraction of events
in D that match " (i.e., IJI\%II ). The confidence of 7’ is defined as the ratio of

the number of events that match 7’ to the number of events that match r (i.e.,
||A1\{1:I|I)' Given two user-specified thresholds ps and p. and a timing constraint
[u, v], the problem of mining time-delayed associations is to find all associations
r such that supp(r) > ps and conf(r) > pe.

In our model, we use the same timing constraint [u,v] for all associations.
Therefore, we will use a plain arrow “—” instead of “/““.” in the rest of the
paper when the timing constraint is clear from the context or is unimportant.

3 The Baseline Algorithm

We start this section with two properties based on which the baseline algorithm
is designed.

Property 1: If |Dy|, i.e., the number of occurrences of type I events, is smaller
than ps x| D, then any association of the form » = I — J must be infrequent.
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algorithm BASELINE
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3
F := {all frequent event types} 4
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foreach I € F,J € € do 15
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4) C:=Ccu{l— 1}
5) end-for

6) while C # 0 do

7) Cpn:=C; C:=0 (a) (b)
8) foreach r € C,, do

9) if r =1 — J is frequent do (3,5]
10) L:=LuU{r} (A—
11) Ci=Cu{(l—J) > K}VEKcE m g
12) end-if 4

13) end-for 5 13
14) n:=n++1 5

15) end-while

16) return £ (C)

Fig. 2. Algorithm BASELINE Fig.3. M-Q mappings for various
time-delayed associations

Proof: By definition, the set of matches of » must be a subset of D;. Hence,
|M.| < |Dr| < ps x |D]. O

Property 2: For any associations x and y = x — K, supp(x) > supp(y).
Proof: By definition, M, D M,. Hence, supp(z) > supp(y). O

From Property 2, we know that if an association y is frequent, so is x. In other
words, if an association x is not frequent, we do not need to consider any associ-
ations that are right extensions of 2. The baseline algorithm (Figure[2]) generates
associations based on this observation.

First, the algorithm collects into the set F all frequent event types (Line 2).
The algorithm then maintains two sets: C is a set of candidate associations which
are to be verified, and L is a set that contains all frequent associations discovered.
The set C is initialized to contain all possible length-2 associations (Lines 3-5).
The support of a candidate association r is determined. (We will discuss how
to compute the support shortly.) If r is verified to be frequent, we extend r to
r — K for each event type K € £ and add them to C. The algorithm terminates
when all candidates are evaluated and no new candidates can be generated.

To compute an association’s support, consider an association r = (I — J) —
K. By definition, an event i is a match of r if ¢ is a match of ry =1 — J and
for some consequence j of i, there exists an event k such that E; = K and
t; +u <t <tj+v. In other words, j is both a consequence of r; and a match
of ro = J — K. The set of all such events is given by @,, N M,,. We call this
the connecting set between r; and 9. We then have the following properties.

Property 3: For any event j € Q,, N M,,, every ¢ € m,, ; is a match of r and
every k € gy, j is a consequence of event ¢ w.r.t. r for every i € m,, ;.

Proof: By definition, every ¢ € m,., ; is a match of r because there exists k such
that t; +u < tp < t; +v. Indeed, every k € g¢,,,; fulfils this requirement.
Hence, every k € g, ; is a consequence of ¢ w.r.t. r for every i € m,, ;. O
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Property 4: For any event j & Q,, N M,,, Ai € m,, j,k € g, ; such that i is
a match and k is a consequence of ¢ w.r.t. r.

Proof: (i) Any event j € @Q,, cannot be a consequence of any ¢ € M, for the
association r1. So m,, ; = (. (ii) For any j € Q,, but j & M,,, gr,; =0. O

Given an association r and a match i of r, we can determine all consequences
j of ¢ w.r.t. r. If we put all these match-consequence i-j pairs in a relation, we
obtain an M- mapping of the association r. Let us consider the network switch
example again (Figure ). If » = A-2°L B, then the matching type-A event at
t = 4 leads to two consequence type-B events at ¢ = 7 and 9. Hence the tuples

(4,7) and (4,9) are in the M-Q mapping of the association. Figures and
show the M-Q mappings of the associations A->°% B and B-22L.C respectively.
By Property 3, given the M-Q mappings for r1 and ry, denoted respectively
by T7 and Ts, we can derive the M-Q mapping of r by performing an equi-
join on T7 and T, so that T1.¢q = Ts.m, where the join result is projected on
Ty.m and T5.q. removing the duplicate tuples in the mapping. Figureshows
the resultant M-Q mapping of (AMB)MC. Given the M- mapping of an
association 7, the support supp(r) can be computed by counting the number
of distinct elements in the m column. The confidence of r can then be easily
determined by the supports of its sub-associations. In this paper, we focus on
computing the supports of associations and extracting those that are frequent.

4 Improving the Baseline Algorithm

The baseline algorithm described in the previous section offers a method to
find frequent time-delayed associations. In this section, we propose methods to
improve the efficiency of the algorithm by investigating two areas, namely the
search space for frequent associations and the handling of intermediate results.

4.1 Pruning Strategy

For our problem of mining time-delayed associations, Properties 1 and 2, de-
scribed in Section 3], are the only base for trimming the search space for frequent
time-delayed associations. So, the baseline algorithm takes all possible extensions
of a frequent association as candidates. A better strategy would be to estimate
an upper-bound for the support of each candidate, without actually joining the
M-@Q mappings of its sub-associations, and trim those that cannot be frequent.

Multiplicity of consequences. With respect to a time-delayed association,
an event can be a consequence of one or more matches. We define, for an associ-
ation r, the multiplicity of a consequence ¢ as the number of matches such that
q is a consequence. Getting the multiplicity values is easy. By sorting the M-Q
mapping of an association r by the g column, rows for a particular consequence
are arranged consecutively. The multiplicity of each consequence ¢ is thus ob-
tained by the number of consecutive rows corresponding to g. Figure shows
an example. Based on multiplicity, we propose two methods, namely, GlobalK
and SectTop, for efficiently identifying candidates that cannot be frequent.
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Fig. 4. Multiplicity of consequences and SectTop

GlobalK. The notion of multiplicity implies that, for an associationr; = I — J,
the sum of the multiplicities of n distinct consequences gives an upper-bound on
the number of matches associated. Given that ry is frequent. To verify whether
an association r = (I — J) — K is frequent, we consider ry and r, = J — K.
It is clear that the connecting set between r; and ro contains at most r =
min(|Qr, |, |M,,|) events, which in turn are associated to at most y matches of
r1 where y is the sum of the top x multiplicity values w.r.t. r1. If y is smaller
than ps X |D|, r cannot be frequent. In general, for a time-delayed association
r1 = I — J, we call the minimum number of consequences such that the sum of
their multiplicity values is not smaller than the support threshold the GlobalK
threshold for the association. Any extension of ry of the form (I — J) — K
cannot be frequent if |M;_, k| is smaller than the GlobalK threshold of ry.

SectTop. GlobalK is a simple method for pruning candidates that cannot be
frequent. However, the GlobalK threshold, which is derived from the highest
multiplicities for an association, can be too generous as a pruning condition as
those consequences with top multiplicities may not all enter the connecting set.

We address this issue in SectTop. In simple words, we conceptually divide
the whole length of time represented by D into a number of segments. For a
frequent association r; = I — J, for each segment, we capture information on
the multiplicities of the consequences occurring within the segment in a SectTop
vector. Then, when checking whether an association r = (I — J) — K can be
frequent, for each segment, we get an upper-bound on the number of matches
that associate to the consequences in the segment. The sum of the upper-bounds
for each segment thus gives an overall upper-bound on the number of matches of
r. If the overall upper-bound is smaller than ps x |D|, then r cannot be frequent.

For an association r1, the SectTop vector for a segment is obtained as follows.
First, the multiplicities for the consequences of r; occurring within the segment
are sorted inversely. Then, we keep the x highest multiplicity values such that x
is minimum and the sum of the x multiplicities exceeds ps x |D|. If the sum of
all x values does not exceed ps x |D|, we keep all multiplicities. The multiplicity
values are then transformed to a vector such that the y-th element is the sum of
the top-y multiplicities in the segment. Figure shows the SectTop vectors
derived from the M-Q mapping in Figure if the length of time represented
by the dataset is divided in segments of 5 time units.
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Fig. 5. Candidate generation schemes

To check whether an association r = (I — J) — K can be frequent, we count
the number of distinct matches for the sub-association r = J — K appearing in
each segment. If there are y matches for J — K in the i-th segment, then, in the
segment, at most y consequences of r; may appear in the connecting set. Hence,
an upper-bound on the number of matches associated to the consequences is
given by the y-th element of the SectTop vector for the segment. We get the
upper-bounds for each segment and their sum gives an overall upper-bound on
the number of matches of r. As an example, the table on the left in Figure is
the M-Q mapping of J — K, while that on the right lists the number of matches
of J — K appearing in each segment. When evaluating whether r = (I — J) —
K can be frequent, we check the number of matches of J — K in each segment
against the SectTop vectors of I — J. It turns out that the overall upper-bound
on the number of matches for r is (0 + 3 4+ 0) = 3. If the support threshold is
4 matches, then we know immediately that r cannot be frequent.

4.2 Cache Management

The baseline algorithm generates a lot of associations during execution. Some of
them are repeatedly used for evaluating other candidates later on. Because the
volume of data being processed is often very large, keeping all such associations
in main memory is not feasible. Maintaining a cache is thus a compromise so
that, while keeping some of the intermediate results in memory and reduce I/0
accesses, memory can be made available for other operations.

When the cache overflows, part of the cached data is replaced by data fetched
from disk. Two commonly used strategies for choosing data for replacement
are “Least recently used” (LRU), i.e., data that have not been accessed for
the longest time are replaced, and “Least frequently used” (LFU), i.e., least
frequently accessed data in the cache are replaced.

The effectiveness of cache, i.e., the likeliness that the data accessed is in the
cache, is often mentioned as the hit-rate. We argue that the hit-rate is related
to the order that candidates are evaluated and the cache replacement strategy
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chosen. Figure [Bf(a) and (b) shows two candidate generation schemes commonly
used in level-wise algorithms. Figure Bl(a) illustrates a depth-first (DF) candi-
date generation, i.e., after an association r = I — J is evaluated as frequent,
the algorithm immediately generates candidates by extending r and evaluates
them. Figure Bi(b) illustrates a breadth-first (BF) candidate generation that all
candidates of the same length are evaluated before longer candidates. These
candidate generation schemes would not work well with the LRU strategy. For
example, in Figure Bla), A — B is referenced when evaluating the candidates
(A—- A) - A) - B and (B — C) — A) — B. Between the accesses,
a number of other candidates are evaluated, which means that many different
associations are brought into the memory and cache overflows are more likely.
When A — B is accessed the second time, its M-@) mapping may no longer
reside in the cache. Similar problem exists in the BF scheme (see Figure B(b)).
It is noteworthy that, in the baseline algorithm, length-2 associations are
repeatedly referenced for candidate evaluation. In particular, when evaluating
extensions of an association I — J, each of length-2 associations of the form
J — K isreferenced. By processing as a batch all associations in L; with the same
consequence event type (see Figure[Bl(c)), we ensure that length-2 associations of
the form J — K are accessed closely temporally, which favours the LRU strategy.
This observation can be easily fitted into the BF candidate generation scheme.
At the end of each iteration, we sort the associations in L; by their consequence
event type. Then the sorted associations are fetched sequentially for candidate
generation. We call this the breadth-first* (BF*) candidate generation scheme.

5 Experiment Results

We conducted experiments using stock price data. Due to space limitation, we
leave the discussion on how the raw data is transformed into an event dataset
in [4]. The transformed dataset consists 99 event types and around 45000 events.

5.1 Pruning Strategy

In the first set of experiments, we want to study the effectiveness of the pruning
strategy “GlobalK” and “SectTop”. The effectiveness is best reflected by the
number of candidate associations being evaluated. Figure[f shows the number of
candidate associations evaluated when py is set at different values. We comment
that a candidate is regarded as “evaluated” only if the M-Q mapping of the
candidate is enumerated. The lines labelled “NoOpt”, “GlobalK” and “ST32”
represent respectively the case that no pruning strategy (i.e., the original baseline
algorithm) is used, that “GlobalK” is chosen and that “SectTop” is chosen with
the time covered by D divided into 32 segments.

Figure [6la) shows the results when « and v are set to ¢ (i.e., a value just
bigger than 0) and 1 respectively. As shown in the figure, both GlobalK and
SectTop save a major fraction of candidate evaluations performed. At high sup-
port (0.6%), savings of 55% and 82% are observed respectively with GlobalK and
SectTop over the baseline algorithm while, at low support (0.3%), the savings are
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32% and 63%. Similar trend is observed when we changed v to 2 (Figure Bl(b)).
Although the savings are not as dramatic as in the case when v = 1, at low
support (0.7%), GlobalK and SectTop achieve savings of 26% and 41%, while at
high support (0.9%), the savings are around 39% and 44% respectively.

As shown by the figures, SectTop always outperforms GlobalK in terms of
number of candidates being evaluated. A reason is that, for each candidate
¢, SectTop obtains an upper-bound on supp(c) by estimating the number of
matches that are associated to the consequences in each segment. A reasonably
fine segmentation of the time covered by D thus ensures that the upper-bound
obtained is relatively tight. For GlobalK, however, the GlobalK threshold for a
frequent association is calculated from the highest multiplicity values without
considering where these values actually exist in the whole period of time covered
by D. So, the pruning ability of GlobalK is not as good as that of SectTop.

5.2 Candidate Generation, Cache Replacement Strategy and I/0
Costs

In the second set of experiments, we want to study the effect of candidate gen-
eration orders on different cache replacement strategies. We plot the number of
M-@Q mapping tuples read from disk, reflecting total I/O requirement, against
the size of the cache in Figures [ and

We start the analysis with the LRU strategy and ps set to a relative low
value at 0.3%. Figureshows the I/O performance when no pruning strategy
is applied. From the figure, we find that the I/O performance of breadth-first
and that of depth-first strategies are very close to each other. For BF* strategy,
the I/O cost begins to drop at 16000 tuples and then drops dramatically. The
improvement levels down when the cache size is increased to 24000 tuples.

The sharp improvement here is no coincidence. Recall that in BF* candidate
generation, at the end of each iteration, we sort the newly found frequent asso-
ciations by their consequence event type. Candidates are formed and evaluated
by extending each of the sorted associations sequentially. In other words, after
candidates of the form (I; — J) — K are evaluated (for some simple or complex
event type 1), next evaluated are those of the form (Iy — J) — K, if such I,
exists. The whole set of length-2 associations with triggering event type J are
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accessed multiple times for these candidates. If the cache is big enough to hold
the M-@Q mappings of all such length-2 associations, it is likely that the M-Q
mappings are in the cache after they are referenced for the first time. For the
dataset used in the experiment, we find that the maximum sum of the sizes of
all M-Q mappings of a particular triggering event type is about 22000 tuples. A
cache with 24000-tuple capacity is thus big enough to save most I/O accesses.
Figure shows the case when “ST32” is applied. The curves are similar
in shape compared to those in the “NoOpt” case. A big drop in I/O access is
also observed with the curve of BF* and the big drop begins at the cache size of
10000 tuples. This is because SectTop avoids evaluating candidates that cannot
be frequent. So, for a frequent association I — J, it is not necessary to evaluate
every candidate of the form (I — J) — K. A smaller cache is thus enough to
hold the M- mappings of length-2 associations used for candidate evaluation.
Figure [ shows the case of LFU. From the figure, all three candidate gener-
ation methods are very similar in terms of I/O requirement. Both depth-first
and breadth-first generation performed slightly better when LFU was adopted
instead of LRU. However, the “big drop” with BF* is not observed and so the
performance of BF* is much worse than the case with LRU. It is because the
LFU strategy gives preference to data that are frequently accessed when decid-
ing on what to keep in the cache. This does not match the idea of BF* candidate
generation, which works best when recently accessed data are kept in the cache.
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In addition, associations entered the cache early may reside in the cache for a
long time because, when they are first used for evaluating candidates, a certain
number of accesses have been accumulated. Associations newly added to the
cache must be accessed even more frequently to stay in the cache.

6 Conclusion

We propose time-delayed association as a way to capture time-delayed depen-
dencies between types of events. We illustrate how time-delayed associations can
be found from event datasets in a simple baseline algorithm.

We identify in the simple algorithm two areas for improvement. First, we can
get upper-bounds on the supports of candidate associations. Those that cannot
be frequent are discarded without finding their actual supports. We proposed
two methods, namely, GlobalK and SectTop, for getting an upper-bound on a
candidate’s support. Experiment results show that these methods reduce signif-
icantly the number of candidates being evaluated.

Second, some of the intermediate results generated are repeatedly used for
candidate evaluation. Since the volume of data being processed is likely to be
high, such intermediate results must be disk-resident and are brought into main
memory only when needed. Caching of the intermediate results is thus important
for reducing expensive I/O accesses. We find that the order that candidate as-
sociations are formed and evaluated would affect the performance of the cache.
Experiment results show that the BF* candidate generation scheme, coupled
with a reasonably-sized cache and the LRU cache replacement strategy, can
comprehensively reduce the I/O requirement of the algorithm.
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Abstract. Recent research shows that ontology as background knowledge can
improve document clustering quality with its concept hierarchy knowledge.
Previous studies take term semantic similarity as an important measure to
incorporate domain knowledge into clustering process such as clustering
initialization and term re-weighting. However, not many studies have been
focused on how different types of term similarity measures affect the clustering
performance for a certain domain. In this paper, we conduct a comparative
study on how different semantic similarity measures of term including path
based similarity measure, information content based similarity measure and
feature based similarity measure affect document clustering. We evaluate term
re-weighting as an important method to integrate domain ontology to clustering
process. Meanwhile, we apply k-means clustering on one real-world text
dataset, our own corpus generated from PubMed. Experiment results on 8
different semantic measures have shown that: (1) there is no a certain type of
similarity measures that significantly outperforms the others; (2) Several
similarity measures have rather more stable performance than the others; (3)
term re-weighting has positive effects on medical document clustering, but
might not be significant when documents are short of terms.

Keywords: Semantic Similarity Measure, Document Clustering, Domain
Ontology.

1 Introduction

Recent research has been focused on how to integrate domain ontology as background
knowledge to document clustering process and shows that ontology can improve
document clustering performance with its concept hierarchy knowledge [2, 3, and 16].
Hotho et al. [2] uses WordNet synsets to augment document vector and achieves
better results than that of “bag of words” model on public domain. Yoo et al. [16]
achieves promising cluttering result using MeSH domain ontology for clustering
initialization. They first cluster terms by calculating term semantic similarity using
MeSH ontology (http://www.nlm.nih.gov/mesh/) on PubMed document sets [16].
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Then the documents are mapped to the corresponding term cluster. Last, mutual
reinforcement strategy is applied. Varelas et al. [14] uses term re-weighting for
information retrieval application. Jing et al. [3] adopt similar technique on document
clustering. They re-weight terms and assign more weight to terms that are more
semantically similar with each other.

Although existing approaches rely on term semantic similarity measure, not many
studies have been done on evaluating the effects of different similarity measures on
document clustering for a specific domain. Yoo et al. [16] uses only one similarity
measure that calculates the number of shared ancestor concepts and the number of co-
occurred documents. Jing et al. [3] compares two ontology based term similarity
measure. Even though these approaches are heavily relied on term similarity
information and all these similarity measures are domain independent, however, to
date, relatively little work has been done on developing and evaluating measures of
term similarity for biomedical domain (where there are a growing number of
ontologies that organize medical concepts into hierarchies such as MeSH ontology)
on document clustering.

Clustering initialization and term re-weighting are two techniques adopted for
integrating domain knowledge. In this paper, term re-weighting is chosen because: (1)
a document is often full of class-independent “general” terms, how to discount the
effect of general terms is a central task. Term re-weighting may help discount the
effects of class-independent general terms and aggravate the effects of class-specific
“core” terms; (2) hierarchically clustering terms [16] for clustering initialization is
more computational expensive and more lack of scalability than that of term re-
weighting approach.

As a result, in this paper, we evaluate the effects of different term semantic
similarity measures on document clustering using term re-weighting, an important
measure for integration domain knowledge. We examine 4 path based similarity
measures, 3 information content based similarity measures, and 2 feature based
similarity measures for document clustering on PubMed document sets. The rest of
the paper is organized as follows: Section 2 describes term semantic similarity
measures; section 3 shows document representation and defines the term re-weighting
scheme. In section 4, we present and discuss experiment results. Section 5 concludes
the paper shortly.

2 Term Semantic Similarity Measure

Ontology based similarity measure has some advantages over other measures. First,
ontology is created by human being manually for a domain and thus more precise;
second, compared to other methods such as latent semantic indexing, it’s much more
computational efficient; Third, it helps integrate domain knowledge into the data
mining process. Comparing two terms in a document using ontology information
usually exploit the fact that their corresponding concepts within ontology usually have
properties in the form of attributes, level of generality or specificity, and their
relationships with other concepts [11]. It should be noted that there are many other
term semantic similarity measures such as latent semantic indexing, but it’s out of
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scope of our research, our focus here is on term semantic similarity measure using
ontology information. In the subsequent subsections, we classify the ontology based
semantic measures into the following three categories and try to pick popular
measures for each category.

2.1 Path Based Similarity Measure

Path based similarity measure usually utilizes the information of the shortest path
between two concepts, of the generality or specificity of both concepts in ontology
hierarchy, and of their relationships with other concepts.

Wu and Palmer [15] present a similarity measure finding the most specific
common concept that subsumes both of the concepts being measured. The path length
from most specific shared concept is scaled by the sum of IS-A links from it to the
compared two concepts.

2H

S C,Cy)=——
wep(C1.C2) Nyt Ny +2H (1)

In the equation (1), N;and N, is the number of IS-A links from C;,C, respectively to
the most specific common concept C , and H is the number of IS-A links from C to
the root of ontology. It scores between 1(for similar concepts) to 0. In practice, we set
H to 1 when the parent of the most specific common concept C is the root node.

Li et al. [8] combines the shortest path and the depth of ontology information in a
non-linear function:
o P P

SLi(Cl’C2)=€ W (2)

where L stands for the shortest path between two concepts, & and [ are parameters

scaling the contribution of shortest path length and depth respectively. The value is
between 1(for similar concepts) and 0. In our experiment, the same as [8]’s, we set
o and S to 0.2 and 0.6 respectively.

Leacock and Chodorow [7] define a similarity measure based on the shortest path
d(C,,C,)between two concepts and scaling that value by twice the maximum depth

of the hierarchy, and then taking the logarithm to smooth the resulting score:
Srac(C1.Cy)=~logld(C1,C,)/2D) 3)

where D is the maximum depth of the ontology and similarity value. In practice, we
add 1 to both d(c;,C;,)and 2D to avoid log (0) when the shortest path length is 0.

Mao et al. [10] define a similarity measure using both shortest path information
and number of descendents of compared concepts.

o
d(C1.C2)loga (14 d(C) + d(C)) )

SMao (Cl ,Co ) =

where d(C;,C,) is the number of edges between ¢, and C,, d(C;)is the number of
C;’s descendants, which represents the generality of the concept. Here, the constant



118 X. Zhang et al.

0 refers to a boundary case where ¢; is the only direct hypernym of ¢,, C, is the
only direct hyponym of ¢; and C, has no hyponym. In this case, because the
concepts C; and C, are very close, § should be chosen close to 1. In practice, we set
itto 0.9.

2.2 Information Content Based Measure

Information content based measure associates probabilities with concepts in the
ontology. The probability [11] is defined in equation (5), where freq(C) is the
frequency of concept C, and freq(Root) is the frequency of root concept of
the ontology. In this study, the frequency count assigned to a concept is the sum of the
frequency counts of all the terms that map to the concept. Additionally, the frequency
counts of every concept includes the frequency counts of subsumed concepts in an IS-
A hierarchy.

freq(C)
I = _Jog| IO

2 og[ freq(Root)J ®)
As there may be multiple parents for each concept, two concepts can share parents by
multiple paths. We may take the minimum /C(C) when there is more than one shared

parents, and then we call concept C the most informative subsumer— IC,,;, (C,C,).
In another word, IC,,, (C,,C,) has the least probability among all shared subsumer
between two concepts.

SResnik (C1,C2) = =10g IC,is (C1,C2) (6)
S Jiang (C1,C2) = =log IC(Cy) —log IC(C3) +210g IC 5 (C1,C3) 7

Resnik [12] presents a similarity measure. It signifies that the more information
two terms share in common, the more similar they are, and the information shared by
two terms is indicated by the information content of the term that subsume them in the
ontology. The measure reveals information about the usage within corpus of the part
of the ontology queried. Jiang [4] includes not only the shared information content
between two terms, but also the information content each term contains.

Lin [9] utilizes both the information needed to state the commonality of two
terms and the information needed to fully describe these two terms. Since
IC is(C1,Co) >=1og IC(C}) , logIC(C,) the similarity value varies between 1(for similar

concepts) and 0.

Stin (Cl ,Cz) _ 2l0g IG5 (€1, C2) (8)
log IC(Cy) +10gIC(C>)

2.3 Feature Based Measure

Feature based measure assumes that each term is described by a set of terms
indicating its properties or features. Then, the more common characteristics two terms
have and the less non-common characteristics they have, the more similar the
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terms are [14]. As there is no describing feature set for MeSH descriptor concepts, in
our experimental study, we take all the ancestor nodes of each compared concept as
their feature sets. The following measure is defined according to [5, 9]:
_ |Ans(Cy) n Ans(Cy)|
~Ans(Cp) U Ans(Cy)|

(€))

S BasicFeature (Cl .G )

where Ans(C,;) and Ans(C,) correspond to description sets (the ancestor nodes) of
terms C; and c2 respectively, C;C, is the join of two parent node sets and
C, UG, is the union of two parent node sets.
Knappe [5] defines a similarity measure as below using the information of
generalization and specification of two compared concepts:
y |Ans(Cy) M Ans(Cy)|
|ans(Cy)|

|Ans(Cy) M Ans(Cy)|

td-p)x [Ans(Cy)|

SKnappe (Cl .G ) =D (10)
where p’s range is [0, 1] that defines the relative importance of generalization vs.
specialization. This measure scores between 1 (for similar concepts) and 0. In our

experiment, p is set to 0.5.

3 Document Representation and Re-weighting Scheme

MeSH. Medical Subject Headings (MeSH) mainly consists of the controlled
vocabulary and a MeSH Tree. The controlled vocabulary contains several different
types of terms, such as Descriptor, Qualifiers, Publication Types, Geographics, and
Entry terms. Among them, Descriptors and Entry terms are used in this study since
they are terms that can be extracted from documents. Descriptor terms are main
concepts or main headings. Entry terms are the synonyms or the related terms to
descriptors. For example, “Neoplasms” as a descriptor has the following entry terms
{“Cancer”, “Cancers”, “Neoplasm”, “Tumors”’, “Tumor”, “Benign Neoplasm”,
“Neoplasm, Benign”}. MeSH descriptors are organized in a MeSH Tree, which can
be seen as the MeSH Concept Hierarchy. In the MeSH Tree there are 15 categories
(e.g. category A for anatomic terms), and each category is further divided into
subcategories. For each subcategory, corresponding descriptors are hierarchically
arranged from most general to most specific. In addition to its ontology role, MeSH
descriptors have been used to index MEDLINE articles. For this purpose, about 10 to
20 MeSH terms are manually assigned to each article (after reading full papers). On
the assignment of MeSH terms to articles, about 3 to 5 MeSH terms are set as
“MajorTopics” that primarily represent an article.

With mesh descriptor and MeSH tree, the similarity score between two medical
terms can be easily calculated. Therefore, we first match the terms in each document
abstract to the Entry terms in MeSH and then maps the selected Entry terms into
MeSH Descriptors. We select those candidate terms (1- 6gram) that only match with
MeSH Entry terms. We then replace those semantically similar Entry terms with the
Descriptor term to remove synonyms. We next filter out some MeSH Descriptors that
are too general (e.g. HUMAN, WOMEN or MEN) or too common in MEDLINE
articles (e.g. ENGLISH ABSTRACT or DOUBLE-BLIND METHOD). We assume
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Fig. 1. The concept mapping from MeSH entry terms to MeSH descriptors

that those terms do not have distinguishable power in clustering documents. Hence,
we have selected a set of only meaningful corpus-level concepts, in terms of MeSH
Descriptors, representing the documents. We call this set Document Concept Set
(DCS), where DCS = {C;, C3, ..., C,} and C; is a corpus-level concept. Fig.1 shows
that MeSH Entry term sets are detected from “Doc,” and “Doc,” documents using the
MeSH ontology, and then the Entry terms are replaced with Descriptors based on the
MeSH ontology. For a more comprehensive comparative study, we represent
document in two ways: MeSH entry terms, MeSH descriptor terms. At the time of this
writing, there are about 23833 unique MeSH descriptor terms, 44978 MeSH ontology
nodes (one descriptor term might belong to more than one ontology nodes) and
593626 MeSH entry terms.

Re-weighting Scheme. A document is often full of class-independent “general”
words and short of class-specific “core” words, which leads to the difficulty of
document clustering. Steinbach et al. [13] examines on the data that each class has a
“core” vocabulary of words and remaining ‘“general” words may have similar
distributions on different classes. To solve this problem, we should “discount” general
words and ‘“emphasize” more importance on core words in a vector [17]. [3, 14]
define the term re-weighting scheme as below

- m

xjilzxji1+zi2:1 S(xjil’xjiZ)'xjiZ (11)

iy #i,
S(x ji1,% jip )2Threshold

where x stands for term weight, m stands for the number of co-occurred terms, and

S (x jits X ii2) stands for the semantic similarity between two concepts. Through this re-

weighting scheme, the weights of semantically similar terms will be co-augmented.
Here the threshold stands for minimum similarity score between two compared terms.
Since we are only interested in re-weighting those terms that are more semantically
similar with each other, it’s necessary to set up a threshold value—the minimum
similarity score between compared terms. Besides, it should be noted that the term
weight can be referred as term frequency (TF), normalized term frequency (NTF) and
TF*IDF (Inverse Document Frequency).
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4 Experiment Setting and Result Analysis

4.1 Datasets and Indexing Schemes

We conduct experiments on public MEDLINE documents (abstracts). First we
collect document sets related to various diseases from MEDLINE. We use
“MajorTopic” tag along with the disease-related MeSH terms as queries to
MEDLINE. Table 1 shows the 10 document sets (24566 documents) retrieved from
MEDLINE. Then, the collected dataset is indexed using two schemes: MeSH entry
term and MeSH descriptor term. The average document length for MeSH entry term
and MeSH descriptor are 14 and 13 respectively (as shown in table 2). Compared to
the average document length—81 when using bag of words representation, the
dimension of clustering space is dramatically reduced. A general stop word list is
applied to bag of words scheme. Moreover, we collect PubMed documents from
1995-2005 to make MeSH descriptor stop term list for MeSH term and MeSH
descriptor term indexing. Since a MeSH entry term can be mapped to more than one
MeSH descriptor term in MeSH ontology, we then map it to the MeSH descriptor
term which is semantically similar with most of the other terms in the document. For
a better comparative study, we also make the following environmental settings: 1)
the number of clusters is set to 10, the same as the number of the document sets; 2)
documents with length less than 5 are removed from the clustering process; 3) when
conducting k-means clustering, we run ten times with random initialization and take
the average as the result. During the comparative experiment, each run has the same
initialization.

4.2 Evaluation Methodology

Cluster quality is evaluated by four extrinsic measures, entropy [13], F-measure [6],
purity [19], and normalized mutual information (NMI) [1]. Because of space
restrictions, we only describe in detail a recently popular measure—NMI, which is
defined as the mutual information between the cluster assignments and a pre-existing
labeling of the dataset normalized by the arithmetic mean of the maximum possible
entropies of the empirical marginal, i.e.,

1(X;Y)

NMI(X,Y)=W (12)
where X is a random variable for cluster assignments, Y is a random variable for the
pre-existing labels on the same data, k is the number of clusters, and c is the number
of pre-existing classes. NMI ranges from O to 1. The bigger the NMI is the higher
quality the clustering is. NMI is better than other common extrinsic measures such as
purity and entropy in the sense that it does not necessarily increase when the number
of clusters increases. For Purity and F-measure ranging from O to 1, the bigger the
value is the higher quality the clustering has. For entropy, the smaller the value is the
higher clustering quality is.
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Table 1. The Document Sets and Their Sizes

Document Sets No. of Docs

1 Gout 642

2 Chickenpox 1,083

3 Raynaud Disease 1,153

4 Jaundice 1,486

5 Hepatitis B 1,815

6 Hay Fever 2,632

7 Kidney Calculi 3,071

8 Age-related Macular Degeneration 3,277

9 Migraine 4,174

10 Otitis 5,233

Table 2. Document indexing schemes
Indexing Scheme No. of term indexed Avg. doc length

MeSH entry term 14885 14
MeSH descriptor term 8829 13
Word 41208 81

4.3 Result Analysis

To compare the effects of different similarity measures on improving clustering
quality, we run k-means clustering on the collected dataset. We represent each
document as TF*IDF vector, because this scheme achieves much better performance
than NTF and TF. Cosine similarity measure is applied when calculating the distance
between one document vector and the cluster center vector. Moreover, when
representing a document using MeSH entry terms, it’s somewhat similar with
augmenting a document vector with synonym terms. As one MeSH descriptor term
can relate with many different MeSH entry terms, it is possible that two or more
MeSH entry terms with same descriptor term appear in one document. Furthermore, if
a document is represented as a document using MeSH descriptors, it can help map all
the synonyms occurred in one document to their according descriptor terms. In this
paper, we evaluate the clustering qualities of both representation schemes as well as
word representation scheme. The process of clustering is as follows: (1) index the
document sets using MeSH entry terms or MeSH descriptor terms; (2) calculate term
similarity using selected similarity measure and then build similarity matrix for
indexed terms; (3) re-weight terms in each document vector using similarity matrix
and equation (10); (4) Run k-means clustering. We use dragon toolkit [18] to
implement the whole process.

Experimental results show that of the three types of term similarity measures, there
is no a certain type of measures that significantly outperforms others. This can be
partially resulted from the fact that most of these measures consider not only the term
closeness within the ontology but also the depth of the two compared concepts within

the ontology. Apparently, the similarity score of S; ¢, Spesnix and SJiang is not within
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Table 3. Clustering results of MeSH entry terms scheme; each measure is followed by the
threshold of similarity value (in parenthesis) that helps achieve the best results

Type of Measure Similarity Measure Entropy [F-Score |Purity | NMI
Path based Wu & Palmer (0.8) 0.392 0.803 0.876 0.757
Li et al. (0.7) 0.353 0.830 0.871 0.771
Leacock (0.2) 0.930 0.596 0.686 [ 0.524
Mao et al. (0.8) 0.338 0.836 0.885 |0.781
Information Content | Resnik (0.0) 0.353 0.821 0.877 0.774
Jiang (0.1) 0.572 0.695 0.799 {0.701
Lin (0.9) 0.360 0.825 0.880 [0.771
Feature based Basic Feature (0.8) 0.389 0.795 0.874 0.759
Knappe (0.8) 0.484 0.778 0.831 0.717
MeSH entry term None 0.363 0.800 0.870 0.774
Word None 0.245 0.755 0.908 | 0.820

[0, 1]. So term similarity scores using these three measures are normalized before
being applied to do term reweighting for a fair comparison reason. Interestingly,
Information content based measure with support of corpus statistics has very similar
performance with the other two types of measure. This indicates that the corpus
statistics is fit with ontology structure of MeSH and does not improve path based
measure. The measure of Mao et al. achieves the best result in both indexing schemes
as shown in table 3 & 4. The reason might be that it is the only measure that utilizes
the number of descendents information of compared terms. Judging from the overall
performance, Wu et al., Li et al., Mao et al., Resink and the two feature based
measures have a rather more stable performance than that of others. Moreover, for
almost all the cases as shown in table 3, the four evaluation metrics are consistent
with each other except that the score of F-measure and Purity of Wu et al. and Li et al
is slightly better than baseline concept without re-weighting while NMI score of them
is slightly worse.

From table 3 & 4, it’s easily seen that the overall performance of descriptor scheme
is very consistent with and slightly better than that of entry term scheme, which shows
that making a document vector more precise by mapping synonym entry terms to one
descriptor terms has positive effects on document clustering. It’s also noted that both
indexing schemes without term re-weighting have competitive performance to those
with term re-weighting. It shows that term re-weighting as a method of integrating
domain ontology to clustering might not be an effective approach, especially when the
documents are short of terms, because when all these terms are very important core
terms for the documents, ignoring the effects of some of them by re-weighting can
cause serious information loss. This is in contrast to the experiment results in general
domain where document length is relatively longer [3].

It’s obvious that word indexing scheme achieves the best clustering result although
it’s not statistically significant (The word scheme experimental result is listed in both
table 3 & 4 for convenience of reader). However, this does not mean indexing
medical documents using MeSH entry term or MeSH descriptor is a bad scheme. In
other words, it does not mean domain knowledge is not good. First, while keeping
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Table 4. Clustering results of MeSH descriptor terms scheme; each measure is followed by the
threshold of similarity value (in parenthesis) that helps achieve the best results

Type of Measure Similarity Measure Entropy | F-Score [ Purity | NMI
Path based Wu & Palmer (0.8) 0.361 0.789 0.883 10.771
Lietal. (0.7) 0.339 0.756 0.877 10.780
Leacock (0.2) 0.485 0.749 0.907 ]0.720
Mao et al. (0.8) 0.259 0.831 0.907 ]0.814
Information Content | Resink (0.0) 0.346 0.815 0.890 10.777
Jiang(0.1) 0.529 0.703 0.809 ]0.696
Lin (0.9) 0.683 0.582 0.775 ]0.631
Feature based Basic Feature (0.8) 0.385 0.778 0.873 ]0.760
Knappe (0.8) 0.375 0.784 0.866 ]0.765
MeSH descriptor None 0.341 0.772 0.867 |0.776
Word None 0.245 0.755 0.908 | 0.820

competitive clustering results, not only the dimension of clustering space but also the
computational cost is dramatically reduced especially when handling large datasets.
Second, existing ontologies are under growing, they are still not enough for many text
mining applications. For example, there are only 28533 unique entry terms for the
time of writing. Third, there is also limitation of term extraction. So far, existing
approaches usually use “exact match” to map abstract terms to entry terms and can
not judge by the sense the phrase. This will cause serious information loss. For
example, when representing document as entry terms, the average document length
is 14, while the length of the word representation is 81. Finally, if taking advantage of
both medical concept representation and informative word representation, the results
of text mining application can be more convincing.

5 Conclusion

In this paper, we evaluate the effects of 9 semantic similarity measures with a term re-
weighting method on document clustering of PubMed document sets. The k-means
clustering experiment shows that term re-weighting as a method of integrating domain
knowledge has some positive effects on medical document clustering, but might not
be significant. In detail, we obtain following interesting findings from the experiment
by comparing 8 semantic similarity measures three types: path based, information
content based and feature based measure with two indexing schemes—MeSH entry
term and MeSH descriptor: (1) Descriptor scheme is relatively more effective on
clustering than entry term scheme because synonym problem is well handled. (2)
There is no a certain type of measures is significantly better than others since most of
these measures consider only the path between compared concepts and their depth
information within the ontology. (3) Information content based measure using corpus
statistics, as well as ontology structure, does not necessarily improve the clustering
result when corpus statistics is very consistent with ontology structure (4) As the only
similarity measure using the number of descendents information of compared
concepts, the measure of Mao et al. has the best clustering result compared to other
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similarity measure. (5) Similarity measure that is not scored between 1 and 0 needs to
be normalized, otherwise they will aggravate term weight much more aggressively.
(6) Over all, term re-weighting achieves similar clustering result with that without
term re-weighting. Some of them outperform the baseline, some of them don’t and
neither of them is very significant, which may indicate that term re-weighting might
not be an effective approach when documents are short of terms because when most
of these terms are distinguish core terms for a document, ignoring some of them by
re-weighting will cause serious information loss. (7) The performance of MeSH term
based schemes are slightly worse than that of word based scheme, which can be
resulted from the limitation of domain ontology and limitation of term extraction and
sense disambiguation. However, while keeping competitive results, indexing using
domain ontology dramatically reduces the dimension of clustering space and
computational complexity. Furthermore, this finding indicates that there should be an
approach taking advantage of both medical concept representation and informative
word representation.

In our future work, we may consider other biomedical ontology such as Medical
Language System (UMLS) and also expand this comparative study to some public
domain.
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Abstract. Due to its tremendous commercial potential, sports video
has become a popular research topic nowadays. As the bridge of low-level
features and high-level semantic contents, automatic shot clustering is
an important issue in the field of sports video content analysis. In previ-
ous work, many clustering approaches need some professional knowledge
of videos, some experimental parameters, or some thresholds to obtain
good clustering results. In this article, we present a new efficient shot
clustering algorithm for sports video which is generic and does not need
any prior domain knowledge. The novel algorithm, which is called Valid
Dimension Clustering(VDC), performs in an unsupervised manner. For
the high-dimensional feature vectors of video shots, a new dimensional-
ity reduction approach is proposed first, which takes advantage of the
available dimension histogram to get ”valid dimensions” as a good ap-
proximation of the intrinsic characteristics of data. Then the clustering
algorithm performs on valid dimensions one by one to furthest utilize the
intrinsic characteristics of each valid dimension. The iterations of merg-
ing and splitting of similar shots on each valid dimension are repeated
until the novel stop criterion which is designed inheriting the theory of
Fisher Discriminant Analysis is satisfied. At last, we apply our algo-
rithm on real video data in our extensive experiments, the results show
that VDC has excellent performance and outperforms other clustering
algorithms.

1 Introduction

In the past a few years, more and more sports videos are being produced, dis-
tributed and made available all over the world, thus, as an important video
domain, sports video has been widely studied due to its tremendous commercial
potential.

Different from other categories of video such as news, movie, sitcom, etc.,
sports video has its own special characteristics [I]. A sports game usually occurs
at a specific field and always has its own well-defined content structures and
domain-specific rules. In addition, sports video is usually taken by some fixed
cameras which have some fixed motions in the play field, and that results in some
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recurrent distinctive scenes throughout the video. For example, in a basketball
game video, there are always four dominant scenes including play field, close-
up of players, distant-view of players and audiences. To well understand sports
video, how to take full advantage of dominant scenes is important. Video shot
which comprises a sequence of interrelated consecutive frames taken continuously
by a single camera represents a continuous action in time and space, and it is
the basic unit of video scene. Since video shots of a scene are usually similar,
merging similar shots into clusters becomes useful for the analysis of dominant
scenes and even for the high-level contents of videos.

For shot clustering, some conventional algorithms such as k-means clustering
and hierarchical clustering have been exploited recently [2] [3]. These methods,
however, all require some prior domain knowledge to obtain good clustering re-
sults. Apart from this, these existing clustering algorithms all have their intrinsic
limitations to process high-dimensional data.

In this article, we put forward a novel shot clustering algorithm for sports
video, and the main contributions of our work is listed as follows. First, a new
dimensionality reduction approach is proposed. By applying available dimension
histogram(ADH), only valid dimensions are extracted to achieve the goal of
dimensionality reduction. Second, in the subspace of valid dimensions, according
to the different essentialities of them, our clustering algorithm performs on valid
dimensions one by one to get more encouraging clustering results. Third, a novel
stop criterion for the iterative merging and splitting procedures of each valid
dimension is designed based on the theory of Fisher Discriminant Analysis.

The rest of this paper is structured as follows. Section 2 will introduce the
novel dimensionality reduction approach. The details of our shot clustering al-
gorithm will be discussed in section 3. In section 4, the performance study will
be described. Section 5 will give some related work while section 6 will conclude
the paper and suggest the future work.

2 Dimensionality Reduction

In this section, we will discuss our dimensionality reduction approach in detail.
The valid dimension is introduced first, then how to extract valid dimensions
by available dimension histogram(ADH) to achieve the goal of dimensionality
reduction is proposed.

2.1 Valid Dimension

For high-dimensional data, not all dimensions are useful for different applica-
tions. In many applications, such as clustering, indexing, information retrieval,
only some special dimensions are needed. Figure 1 shows an example of cluster-
ing. According to the distribution of the data set in (a), if we want to partition
the points into three clusters, the clustering results can be easily found out by
computing the distances among the points in the feature space of dimension d1
and d2. But in fact, we have no use to take both of the two dimensions into
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Fig. 1. An example of valid dimensions for clustering

account, only dimension dI is enough. (b) shows that the clustering results ob-
tained by only considering dimension dI are the same as the clustering results
in (a). Therefore, dimension dI is contributing for clustering, and it is a valid
dimension of the data set.

Valid dimensions are the dimensions which can maximally represent the in-
trinsic characteristics of data set. For the data set in Figure 1, the standard
deviations of dimension dI and d2 are 0.95 and 0.48 respectively. The reason
why dimension d1 is valid for clustering is that its standard deviation is larger
and it can represent the distribution of the data set. Standard deviation of a data
set is a measure of how spread out it is [T1]. The larger the standard deviation
is, the more spread out from the mean the data set is. The data set which is
more spread out is more sensitive in clustering, therefore, the dimension whose
standard deviation is larger is more helpful for clustering.

The dimensionality reduction approach in this paper is to extract the valid
dimensions for our clustering algorithm. In next subsection, we will discuss the
extraction rule for valid dimensions.

2.2 Extraction Rule for Valid Dimensions

Sports videos have their own intrinsic characteristics. The variety of the back-
grounds of sports video is not obvious. By carefully observing the high-
dimensional feature vectors of video shots, it can be easily found that a mass of
dimensions’ values are all zero, especially in the color features. In other words,
these dimensions are useless for computation, and the dimensions whose val-
ues are non-zero are called available dimensions in our paper. Table 1 gives an
example of the ratio of available dimensions over the total dimensions of dif-
ferent categories of sports. It illustrates that the ratios of available dimensions
are about 50%, thus, extracting the available dimensions is the first step of our
dimensionality reduction approach.

Let D,,, be the subspace of data set with m available dimensions. For the values
of the jth dimension of D, S;[j] denotes the value of shot S;, og;] denotes the
standard deviation of jth available dimension of D,,, where 1 < j < m. Standard
deviation of each available dimension indicates its essentiality for clustering.
Larger ogy; illustrates that the data in jth available dimension are more spread
out and more advantageous for clustering.
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Table 1. Ratios of available dimensions of different sports videos

Video data Total dimension Available dimension Ratio

Basketball 512 314 61.3%
Table tennis 512 305 59.6%
Football 512 253 49.4%

Definition 1. valid dimensions. Given a threshold value ¢, the available dimen-
sions whose standard deviations are equal to or greater than e are called valid
dimensions.

Definition 2. available dimension histogram(ADH). The available dimension
histogram of D,,, represents the distribution of m available dimensions’ standard
deviations(ogy;)), in which, the z-axis represents the rank of available dimensions
and the y-axis represents their corresponding og;;. ADH displays the descending
trend of og(;) values. The following Figure 2 gives an example of ADH.

ok M W e U 9 ®
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Fig. 2. Example of available dimension histogram(ADH)

In order to extract valid dimensions which can maximally represent the dis-
tribution of data for clustering, an heuristic method on ADH is applied for
determining the value of €. Let r[i] denote the rank of available dimensions in
D, corresponding to ADH. Then & = 0,3, only if o5 — 0pp41) = max(o,;) —
opit1], 1 <4 <m —1). € is the standard deviation of available dimension r[k]
whose difference to that of r[k+1] is largest in D,,,. That means ¢ is the largest
plunge occurs in VDH. Referring to Figure 2, the largest drop of ADH occurs
from r[3] to r[4], i.e., € = 0,[3), and the available dimensions which correspond
to r[1], r[2], and r[3] are the valid dimensions. Intuitively, such extraction rule
guarantees the most significant available dimensions are extracted as valid di-
mensions for our clustering.

3 Unsupervised Shot Clustering Algorithm

In this section, we will provide an efficient shot clustering algorithm called valid
dimension clustering(VDC) in detail.
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3.1 Algorithm Description of Valid Dimension Clustering

A video shot S; can be represented as: S;={x,x5,... 2%}, where z! is the pth
dimension of the n-dimensional feature vector S;. Let Dy be the subspace of
valid dimensions, where f is the number of valid dimensions which are obtained
by our dimensionality reduction approach.

Valid dimension clustering(VDC) is an unsupervised clustering algorithm
which performs on Dy one by one, that’s because different valid dimensions
have their own different essentialities for clustering. After ranking the standard
deviations of valid dimensions in descending order, we first take the valid dimen-
sion whose standard deviation is the largest as the beginning of the algorithm,
then the following valid dimensions are taken into account in order.

For the first valid dimension, each shot is first initialized as one cluster, then
the iterations of merging similar shots into one cluster are repeated until the
stop criterion is satisfied. For other valid dimension d;, the clustering results of
valid dimension d;_(the prior dimension of d; according to the rank of valid
dimensions) should be set as the initial clustering status of d;, then the same
merging procedures perform on each initial cluster of d; until all initial clusters
have been processed. After finishing valid dimension d;, the algorithm will turn
to d;y1. The final clustering results will be returned when all f valid dimen-
sions are processed. It is obvious that for each valid dimension, only merging
procedures are performed, but for two consecutive valid dimensions d; _; and d;,
the processing of d; is splitting procedures for d;_1. Thus, VDC comprises both
merging and splitting procedures.

Fig. 3. Different clustering results for table tennis

The reason why VDC performs on valid dimensions one by one is explained
by Figure 3. (a) gives the clustering results of VDC, i.e., valid dimensions are
taken into account one by one. While (b) shows the results of the algorithm
which all valid dimensions are taken into account once. Obviously, the results
in (a) are better than (b). Originally, all the six shots are play field shots, but
(b) partitions them into two clusters as different positions of the play table. The
reason is that when we consider all valid dimensions together, all valid dimensions
are treated fairly, the different essentialities of different valid dimensions have
not been distinguished.
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3.2 Stop Criterion of Valid Dimension Clustering

The stop criterion for the iterations is the most critical technique of unsupervised
clustering algorithm. It directly determines the results of clustering. In the paper,
we devise a novel stop criterion which uses Fisher Discriminant Analysis for
reference.

Fisher Discriminant Analysis is a widely used multivariate statistical tech-
nique [12]. The discrimination function can be used as a well-defined rule in
order to optimally assign a new observation into the labeled class. Consider k
populations G1,Ga,. .. ,Gj, each with p-variate distribution which is denoted as
(1,22, .. ,xp). Fisher suggested finding a linear combination of multivariate ob-
servations (x1,Z2,...,%p) to create univariate observation u(z) such that u(z)
can separate the different samples of different populations as much as possible.
Fisher discriminant function can be written as:

u(z) = e = ayzy + aors + .. + (1)

Let SSE and SSG denote the total within-class divergence and total between-
class divergence of each data sample. The o which maximize the criterion F(«)
is used in the Fisher discriminant function, the formula (). F'(«) is represented
as below:

_SS8G aTBa 9
 SSE  aTEa 2)

For our shot clustering algorithm, we are only interested in the concepts of
within-class divergence and between-class divergence. For clustering, the intra-
distance within a cluster and the inter-distance among different clusters can
be mapped into the concepts of within-class divergence and between-class di-
vergence respectively. The clustering results in which the intra-distance of each
cluster is smallest and the inter-distances among different clusters are largest
are the encouraging results. That indicates the data set is separated optimally.

Let r; denote the ratio of the intra-distance of one cluster over the inter-
distances among clusters when the number of clusters is N;, and the best clus-
tering result we want is the one with smallest value of r;. The value of r; can be
calculated by the formula below:

F(a)

N; Ny me
Z:Odfu ;);)|Sf_sﬁ%ean|
r= dt = N (3)
> [S) = Smeanl
7=0

where d; is the initial distance among clusters, dg, is the intra-cluster distance
of cluster c¢. N is the initial number of clusters at the beginning, while m, is the
number of shots in cluster c. || denotes the Manhattan distance. S¢ and S&,.,.,,
represent the ith shot and the mean vector of cluster c¢ respectively, while .S;
and Sineqn are used for denoting the same concept of the initial clusters.

Apart from r;, another important factor n; is considered in our algorithm too,

which is the statistic information of the number of clusters. Let n; = N;/N be
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Fig. 4. Relation curve of r;+n; and m

Algorithm 1. VDC()

Input: ranking array of valid dimensions r[k]; cluster structures CR
Output: clustering results
1: for d,=1 to k do
ptr=GetHead(CR)
while ptr # NULL do
S=0DC(ptr, dn) // S denotes the splitting results
InsertFront(CR, S)
ptr= GetNext(ptr)
dn++
end while
end for

Function ODC(CR,d,)
initialize each shot S; as one cluster C;
Let ri" = 0,n") = 1, calculate dist(Ci, C;)a,,1<i,j < Ni
execute MergeCluster()
WHILE 7V + 2" >+ 4 n® 0N > 1
rl(l) _ rl(2)7 n;l) _ nl(2)
execute MergeCluster()
ENDWHILE
add the clustering results to CR
end Function
Function MergeCluster()
merge two most similar shots into one cluster
calculate rl(z), nl(z) and rl(z) + n§2)
end Function

the ratio of the cluster number N; over the initial total number of shots N. In
order to maximally approximate the real cluster number which is a small value,
the smaller the value of n; is, the better the clustering result is.

At the beginning of the clustering algorithm, each shot is initialized as one
cluster, the value of r; is 0, and the value of n; is 1. Then as the merging proceeds,
the value of 7; is increasing while n; is descending. When all the shots are merged
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into one cluster, the value of r; reaches 1, and n; reaches its smallest value. Since
the encouraging clustering results should have both smaller r; and n;, we choose
min(r; + n;) as the stop criterion of our algorithm. When r; + n; reaches its
smallest value, the iterations of merging stop. For example, the relation curve
of the value of r; +n; and the times of iterations m for one valid dimension of
football is shown in Figure 4. The inflexion of the curve which corresponds to
the smallest value of r; + n; is the stop point of the iterations.

After presenting the stop criterion for iterations of our clustering algorithm,
the detailed algorithm description of VDC is described in Algorithm 1.

4 Performance Study

In this section, we will report our extensive performance study on large real
video data, and the comparison results with other two clustering algorithms.

4.1 Experiments Set Up

Our data set consists of about 4.5 hours’ long video data which includes three
categories of sports video captured from TV stations. The formats of them are all
Mpgs with the frame extraction rate is 25fps, and each frame is 320%240 pixels.
After shot boundaries detecting, each shot is represented by feature vectors in
four high-dimensional degrees: 288-D, 320-D, 384-D and 512-D which all compose
HSV color feature and motion feature in P-frames of it for experiments.

Table 2. Data set statistics

Video Lengh Total shots Cluster of shots(shot number)
Basketball(B) 1:07:25 390 Cl:play field(145);C2:close-up of player(67)
C3:distant view of player(150);C4:audience(28)
Table tennis(T) 1:22:32 634 Cl:play field(220);C2:close-up of player(335)
C3:distant view of player(47);C4:audience(32)
Football(F)  1:35:51 630 Cl:play field(182);C2:close-up of player(275)

C3:distant view of player(93);C4:shooting(56)
Ch:audience(24)

In order to detect the efficiency of our algorithm, we manually identify each
shot into different clusters beforehand according to video grammar. The total
number of shots in our data set is 1654, and the detailed information is listed in
Table 2. Two common used measurements which are Precision(P) and Recall(R)

are used to evaluate the performance of our algorithm. And all the experiments
were done with Intel Pentium D820 processor(2.8GHz CPU’s with 1GB RAM).

4.2 Effectiveness of Valid Dimension Clustering(VDC)

In order to show the excellent performance of our algorithm, other two clustering
algorithms are applied in our experiment as comparisons. One is called FDC
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which applies our stop criterion for merging iterations but performs on the whole
high-dimensional feature space without dimensionality reduction. The other is
called X-means [6] which is a reformative algorithm of k-means.

Efficiency of Dimensionality Reduction. First, we will test the efficiency
of our dimensionality reduction approach which applies the available dimension
histogram(ADH).

Figure 5 depicts the CPU time improvement achieved by VDC over FDC on
the data sets with different dimensionality and different data size.

This experiment confirms that dimensionality reduction is outstanding and
necessary for clustering. When the dimensionality and the size of data are in-
creasing, the CPU time of VDC and FDC are all increasing. But it can be
easily witnessed that the increasing rates of VDC are much slower than FDC,
especially in (a). Obviously, dimensionality reduction plays an important role.
By dimensionality reduction, only valid dimensions are considered in clustering,
thus the algorithm is sped up.

Performance Comparison. In this experiment, we compare VDC with other
two shot clustering algorithms. We test the effect of different dimensional feature
spaces and different categories of sports video.

Figure 6 shows the Precision and Recall of different clustering algorithms as
the dimensionality of Basketball video shots increases. When the dimensional-
ity is increasing, Precision and Recall of all the three algorithms are improved
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because more information are extracted in higher dimensional feature space.
Although the Precision of VDC is only slightly larger than that of FDC, the
Recall of FDC is much smaller. VDC performs best and outperforms X-means
by nearly 10%.

Figure 7 shows their Precision and Recall when the number of shots increases.
For VDC and FDC, following with the increasing number of shots, Precision and
Recall only change a little, and the average values of them are much larger than
those of X-means. Because of the disadvantage on deciding data centers and
number of clusters, the performance of X-means is dissatisfactory comparing
with others.

The performances of clustering algorithms varies from different categories of
sports due to some factors such as positions of cameras, motions of players,
and common screens. Figure 8 shows the distinct performances on the three
categories of sports. Obviously, for table tennis, all the three algorithms perform
best. The main reason is that the play field of table tennis is small, the number
of common screens and the motions of cameras are almost fixed for table tennis,
thus it’s easier to achieve better results for clustering algorithm.

Table 3 illustrates the detailed experimental results of our data sets. For each
cluster which we pre-divided manually, we evaluate the performances of the
algorithms by three measurements: number of clusters C,,, Precision(P), and
Recall(R). In the table, it can be easily found that C,, of VDC is smaller than
other two algorithms and is closer to the manually divided cluster number for
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Table 3. Data set statistics

Video Results of VDC Results of FDC Results of X-means
Cn P(%) R(%) Cn P(%) R(%) C. P(%) R(%)

Basketball: C1 2 97.17 93.54 5 100.0 89.66 7 83.77 85.28
C2 3 9791 98.85 4 92.62 90.84 5 84.32 87.22
C3 2 91.26 95.08 4 88.43 87.72 6 82.81 85.77
C4 1 96.82 91.14 3 89.38 95.10 3 89.13 82.78
Table tennis: C1 2 95.65 100.0 4 100.0 95.45 6 86.45 83.52
C2 2 96.33 95.38 5 87.95 84.86 8 86.74 88.93
C3 3 85.97 91.67 3 90.64 85.17 4 87.09 77.47
C4 1 91.42 90.88 2 100.0 81.25 2 81.98 84.76
Football: Cl 3 9141 9041 5 8293 9444 6 75.68 85.11
C2 2 9542 9255 4 92.30 87.48 6 8549 77.42
C3 2 90.63 89.15 5 90.06 90.18 4 87.53 84.26
C4 2 85.74 100.0 2 91.25 84.79 3 67.68 71.95
C5 1 91.00 88.10 1 87.37 83.66 2 81.06 79.82

different sports. That’s an important advantage of our algorithm which means
the clustering results of VDC are more credible. Set basketball video as an exam-
ple, VDC obtains 8 clusters, FDC and X-means obtain 16 and 21 respectively,
while the manual cluster number is only 4. Since VDC considers most con-
tributing characteristics of data sets which correspond to valid dimensions and
performs on them one by one, it achieves most reasonable clustering results. In
addition, the Precision and Recall of VDC are better than those of FDC and X-
means. Among the results of VDC, there are 11 clusters whose Recall are above
90%, while only 5 clusters whose Recall are above 90% in the results of FDC.
Precision and Recall of X-means are both smallest and the performance is dis-
satisfactory. And the average value of Precision and Recall of VDC are 92.82%
and 93.59% respectively. As a whole, the performance of VDC is desirable.

5 Related Work

Clustering techniques are intended to group data with similar attributes into
clusters that exhibit certain high-level semantics. In previous work, most of the
clustering algorithms which are used in the field of video data require some
parameters to obtain good results. In [4], a shot cluster is split when its variance
is above a pre-specified threshold, and two shot clusters are merged into one when
the distance between their centers is below another pre-defined threshold. In [5],
the number and initial centers of shot clusters are required by k-means clustering
algorithm. But it is well known that the estimation of correct cluster number
and the decision of good cluster centroids had been longstanding problems in
cluster analysis. [6] reported a reformative algorithm of k-means which is called
X-means, and it applied Bayesian information criterion to estimate the number
of clusters.
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For high-dimensional data, the performances of most existing clustering al-
gorithms degrade rapidly [8]. Thus, to minimize the effect of ”dimensionality
curse” before processing high-dimensional data becomes more important. The
technique which using Principle Component Analysis to reduce the dimension-
ality of data works well when the data set is global correlated [8]. [7] proposes
a new approach which dimensionality reduction procedures are dynamic and
can be adaptively adjusted and integrated with the clustering processing. Es-
pecially for video data, there are also a few works to reduce dimensionality of
video data. [9] introduces a new one dimensional transformation technique which
rotates and shifts the original axis system using PCA. To speed up the shot clus-
tering process and minimize the space requirement, [10] applies both PCA and
LDA techniques to reduce the dimension of feature vectors for the domain scenes
clustering algorithm.

6 Conclusions and Future Work

In this paper, we introduce a novel unsupervised shot clustering algorithm for
sports video called valid dimension clustering(VDC). We first apply a new dimen-
sionality reduction approach to get ”valid dimensions”. Then in the subspace of
valid dimensions, VDC performs on valid dimensions one by one. After that, the
iterations of merging and splitting repeat until the novel stop criterion which is
designed inheriting the theory of Fisher Discriminant Analysis is satisfied with-
out any parameters. At last, our extensive experiments on real sports video prove
the effectiveness and efficiency of our proposals.

For our future work, we first plan to further investigate the effectiveness and
efficiency of our algorithm on different kinds of videos. Second, cross-media in-
formation, such as audio, text information, and image will be taken into account
to improve the performance of clustering. Third, more efficient dimensionality
reduction approaches for video data will be also considered in the future.
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Abstract. Intrusion detection system(IDS) has played a central role
as an appliance to effectively defend our crucial computer systems or
networks against attackers on the Internet. Traditional IDSs employ
signature-based methods or anomaly-based methods which rely on la-
beled training data. However, they have several problems, for example,
it consumes huge amounts of cost and time to acquire the labeled train-
ing data, and they often experienced difficulty in detecting new types
of attack. In order to cope with the problems, many researchers have
proposed various kinds of algorithms for several years. Although they do
not require labeled data for training and have the capability to detect
unforeseen attacks, they are based on the assumption that the ratio of
attack to normal is extremely small. However, the assumption may not
be satisfied in a realistic situation because some attacks, most notably
the denial-of-service attacks, consist of a large number of simultaneous
connections. Consequently if the assumption fails, the performance of the
algorithm will deteriorate. In this paper, we present a new normalization
and clustering method that can overcome a limitation on the attack ra-
tio of the training data. We evaluated our method using KDD Cup 1999
data set. Evaluation results show that performance of our approach is
constant irrespective of an increase in the attack ratio.

1 Introduction

In recent years, considerable attention has been given to intrusion detection
on the Internet. Intrusion detection is defined as the process of monitoring the
events occurring in a computer system or network and analyzing them for signs of
intrusions. IDS is one of the systems designed to perform such intrusion detection
and an integral part of any complete security package of a modern well managed
network system.

Conventional IDSs employ signature-based detection, which relies on labeled
training data. However, IDSs using these methods have several problems, for
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example, they can only detect previously known intrusions and it consumes huge
amount of cost and time to acquire the labeled training data. A survey of these
methods is given in [I]. Over the past few years, several studies to solve these
problems have been made on anomaly detection using unsupervised learning
techniques, called unsupervised anomaly detection, which can detect previously
“unseen” attacks and do not require labeled data used in training stage[2/3].

There are many approaches that apply unsupervised anomaly detection for
intrusion detection such as clustering, one-class support vector machine(SVM),
etc[4lBl6]. Although they do not require labeled data for training and have capa-
bility of detecting unforeseen attacks, they make two assumptions about the data
to be trained. First, the ratio of attack to normal is extremely small[9]. Second,
the attack traffic is statistically different from normal traffic[3]. It is important to
note that these assumptions may not be satisfied in a realistic situation because
some attacks, most notably the denial-of-service(DoS) attacks, consist of a large
number of simultaneous connections, and in many cases they may be misclassified
as normal because of their enormous volume. After all, if the assumption fails, per-
formance of the algorithm will deteriorate. In this paper, we propose a new nor-
malization and clustering method for intrusion detection. This proposed method
is based on K-means clustering method[7], which is a typical clustering algorithm.

We evaluated our method over the network data from KDD Cup 1999[g],
which is a very popular and widely used intrusion attack data set. Our exper-
imental results show that performance of our approach is constant irrespective
of an increase in the attack ratio, and outperforms the K-means.

The rest of the paper is organized as follows. In section 2, we give some back-
ground information about data normalization and the K-Means algorithm. In
section 3 and 4, we present our normalization and clustering method in detail,
respectively. In section 5, we describe the details of our experiment and present
the results and their analysis. Finally, we present concluding remarks and sug-
gestions for future study.

2 Related Work

2.1 Normalization

In many approaches that employ anomaly-based intrusion detection with unla-
beled data [QITOITIIT2UTS], it is required to normalize the training and test data
because each feature of the data instances has a different scale. For example,
consider two 3-features vectors: {(1,2,100), (5,3,200)}. Under the Euclidean
metric, the squared distance between the feature vectors will be (1 —5)% + (2 —
3)2 + (100 — 200)2 = 16 + 1 + 10,000 = 10,017. As you see, there is a problem
that the distance is dominated by the third feature.

2.2 K-Means Clustering Algorithm

Clustering is one of unsupervised learning techniques to group data instances into
meaningful subclasses[dl5]. K-means[7] is one of basic methods for clustering. It
partitions a set of data into k clusters through the following steps.



142 J. Song et al.

— Initialization: Randomly choose k instances from data set and make them
initial cluster centers.

— Assignment: Assign each instance to the closest center.

— Updating: Replace every cluster’s center with the mean of its members.

— Iteration: Repeat Assignment and Updating until there is no change for each
cluster, or other convergence criterion is met.

The popularity of the K-means algorithm is largely due to its low time com-
plexity, simplicity and fast convergence. In particular, low time complexity is a
significant factor for intrusion detection because it is performed over large and
high-dimension network data sets. However, it has been known that the K-means
algorithm has several shortcomings as follows.

First, the K-means algorithm is sensitive to the initial centers; that is, the
clustering result of the K-means algorithm is dependent on the chosen initial
centers. Second, high dimension of each data instance causes heavily perfor-
mance deterioration of the algorithm, this is called “curse of dimensionality”.
Third, the K-means algorithm is difficult to choose the number k of clusters to
be created finally. Finally, the K-means algorithm just can find out the local op-
timum, not the global optimum. Hence, we propose a method to overcome these
shortcomings of the K-means for intrusion detection. See section 4 for detail.

3 Normalization

In this section, we present a novel normalization method for preventing an in-
crease of the anomaly ratio from decreasing the performance.

3.1 Defining of Notations

Before describing our method, it is necessary to specify about the major nota-
tions that are used in this paper:

— S ={x1,X2,...,X,}: the set of data instances to be clustered

— n: the number of all data instances in the training data

- x; = (¥j1,2j2,...,2ja4): a vector in real d-dimensional space, R?
— ||x]|: the Euclidean distance of the vector(i.e. instance) x

— C={cy,ca,...,ci}: the set of k cluster centers

— c¢;: the mean of each cluster C;(1 < j < k)

— D ={dy,ds,...,ds}: the set of dimensions in the feature space

3.2 Methodology

Our method is basically based on [9]. In their normalization, they first calculate
the average and standard deviation of every feature in the feature space. By
using them, they calculate, for every feature value of each instance, how far it
is away from the average of corresponding feature, and then the result divided
by its standard deviation becomes the new value(i.e. normalized value) for that
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Table 1. Average and change of normalized value

Ratio of 10 1% 2% 3% 4% 5% 6% % 8% 9% 10%
Average 1.09 1.18 1.27 1.36 1.45 1.54 1.63 1.72 1.81 1.9
Normalized value of 1 -0.1 -0.14 -0.17 -0.20 -0.22 -0.25 -0.27 -0.29 -0.31 -0.33
Normalized value of 10 9.9 6.96 5.65 4.87 4.33 3.93 3.62 3.37 3.16 2.98

feature. However, there is a problem that if the ratio of the attack data increases,
distinction between the normal instances and the attack instances becomes more
difficult. For example, consider 100 1-feature data instances where each data
instance has a value either 1(normal) or 10(attack). From Table 1, we can see
that difference between the normalized value of 1 and 10 diminishes(i.e. be more
difficult to distinguish) gradually with increment of the attack data instances(i.e.
10). This is because that the average value of instances is heavily affected by the
number of the attack instances. As a result, it leads to performance deterioration.

Therefore, we propose a method that can maintain good performance of IDS
irrespectively of normal-attack ratio. In generally, it is obvious that the number
of normal traffic is lager than that of attack traffic in a real environment. It
means that if a data instance is normal, there are a lot of data instances with
the similar attribute value to the data instance, otherwise the number of data
instances which have the similar attribute value is few. Hence, we first partition
the training data into two groups: dense group and sparse group. The dense
group consists of data instances whose attribute values are similar each other
and frequently appear in the training data, while in case of data instances in the
sparse group, similar attribute values are seldom observed in the training data.
Our normalization uses the average and standard deviation from data instances
only from the dense group.

Let us present the algorithm in more detail. For each dimension d;(1 < ¢ < d)
where ¢ denotes the ith dimension, we search the minimum and maximum values
of the training data, and divide their difference into small equi-length partitions
called bin, where the number of the bins is determined by parameter § that is
supplied by user. That is,

di:diludi27...7u dig.

The algorithm repeats the dividing process for every dimension in the feature
space. After the process is finished, the algorithm reads the training data again
and counts the frequency of bins. Let n;, denotes the number of data instances
fall in d;(1 < b < §) and n}, denotes its ascending order; that is,

! A A
NG SNy ... < N5

For all dimensions, the algorithm finds bin dj;, under the following conditions.

-1 l

A < n !

Ny < o < Ny
b=1 b=1
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where « is supplied by a user and d), denotes corresponding bin to n,. If «
equals 100, for example, d; is the first bin where summation of n/, exceeds 1%
of all data instances in the training data. The algorithm then obtains following
nl that represents difference between neighbor bins:

Ny =M1 — Ny for (1<m <1-1),
and we regard m of maximum nf  as M: that is,
M =m of maz{n} |(1<m<Il-1)}.

We then define {dj;, djy, ..., djy} and {dj;; 1, dipryo, -, dig} as “sparse
region” and “dense region”, respectively. By using the sparse and dense region
of each dimension, the algorithm partitions the training data into two groups:
sparse group and dense group. If a data instance has at least one dimension
which belongs to the sparse region, it is classified to the sparse group; otherwise
it becomes a member of the dense group.

Given a set of the dense group, we calculate the average and standard de-
viation of every feature only using the data instances of the group. We then
normalize each instance as follow:

) ) - original instance[j| — averagel[j]
normalized instnace[j] = L .
standard deviation|j]
where [j] is the jth feature. In our normalization work, only numerical features
were converted.

4 Clustering

In this section, we present our clustering algorithm for intrusion detection. The
clustering process is basically the same as the K-means algorithm except that
“Splitting” and “Merging” processes are added just after the updating process.

4.1 Selecting Initial Cluster Centers

In this process, we create k initial cluster centers. In intrusion detection, the ideal
initial cluster centers are required to satisfy the condition where each instance
of the training data should be classified to one of them. The training data have
a lot of clusters which should be labeled either to normal or attack. Therefore,
we have to find both normal and attack clusters that really exist in the training
data, and then calculate the initial cluster centers using them.

In our approach, we utilize the dense and sparse groups to create k initial
cluster centers. First, for representing attack clusters of the training data, the
algorithm generates same groups, S1,S5s,...,5s from the sparse group. If each
vector’s element of both instances belongs to the same sparse region, the algo-
rithm treats them as the same group. Note that the number of same groups
cannot exceed that of data instances in the sparse group. The algorithm also
generates groups(clusters), Ss41, ..., Sk, from data instances in the dense group
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by the following method. First, for one dimension, the algorithm treats all data
instances in each bin of the dense region as member of a cluster. Note that each
instance of the dense group is a member of only one bin in each dimension. The
algorithm then repeats the process for every dimension in the feature space. As
a result, the total number of generated clusters is equal to all number of the
bins that belong to the dense region in every dimension of the feature space.
Note that our algorithm does not require to determine k in advance. Finally, the
algorithm calculates the mean of each cluster Sy (1 < h < k) that becomes the
k initial cluster centers, namely c;(1 < h < k). We also denote these centers
as sp(l < h < K) and K as the number of the initial cluster centers for the
purpose of the labeling process(Section 4.5).

It is important to consider the following case. If the data in any particular
dimension is uniformly distributed, then the dimension does not give any useful
information concerning the dense and sparse region. Hence, we need to determine
whether dimensions are worth investigating. We calculate [nj; — nj,/[(1 < i < d)
for each dimension to extract the uniform dimensions. For the uniform dimen-
sions, we expect them to contain data instances of almost same number with

respect to each bin. Therefore, if a dimension satisfies [nj; — njy| < , we

regard the dimension as the uniform distribution, and our algorithm excludes
the uniform distribution dimensions from the clustering process hereafter.

4.2 Allocating Data Instances

In this process, the algorithm allocates data instances to the closest cluster cen-
ter. As mentioned above, we have to reduce the number of dimensions to improve
performance of the proposed algorithm because as the number of dimensions in
a dataset increases, distance measures become increasingly meaningless (i.e. the
curse of dimensionality). Subspace clustering[I4] is one of methods to reduce
dimension of data instances in the clustering field. Hence, in order to reduce di-
mensions of data instances, we propose an allocating algorithm based on concept
of subspace clustering.

Subspace clustering is the method that attempts to find meaningful clusters
from different subspaces of the same dataset. In subspace clustering, the key
point is that each cluster can be easily extracted from the dataset by finding ap-
propriate subspaces (i.e., dimensions), and in such subspaces the data instances
converge on the particular attribute value. Detailed description about it is given
in [I4].

Therefore, our allocating algorithm begins by searching “dense region dimen-
sions” for each cluster center. We regard the searched dimensions as appropriate
subspace for intrusion detection because many data instances converge on the
dimensions. The algorithm then calculates the distance from data instances to
each of current k cluster centers only with respect to the dense region dimen-
sions. As different from existing researches that have to acquire the distance for
all dimensions, proposed algorithm requires only dimensions which belong to the
dense region of each cluster center. The algorithm then allocates each instance
to the closest cluster center.
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After the assignment process is finished, each cluster center has new data
instances. Therefore the algorithm updates the mean of each cluster center with
its new members.

4.3 Splitting and Merging Clusters

In order to overcome the K-means’s two shortcomings, the number k and local
optimum, we apply splitting and merging processes. There are many variants of
the K-means that employ splitting and merging processes to overcome the two
shortcomings such as ISODATA [I6]. Although the approaches can overcome two
shortcomings, they need many parameters: initial number of clusters, maximum
number of iterations and so on. Therefore, we propose an algorithm that can
overcome two shortcomings and does not require any additional parameters.
We first compute the values as follows:

— Aj: the average distance between data instances in cluster C; and their
cluster center c;

A: average of A;(1 < j<k)

oj: the standard deviation of the average distance between data instances in
cluster C; and their cluster center c;

— o: average of 0 (1 < j < k)

Splitting. For each cluster C;(1 < j < k), if A; > A and ¢; > 0, we search an
instance that is the furthest to its center. If the distance between the instance
and the center is larger than A; 4 ¢, the instance should not be a member of
the cluster. Thus, we create a new cluster and treat the instance as its center.

Merging. We first calculate the values as follows:

— d;;: the distance between all cluster centers
— d: the average distance of d;;

That is,
> di o
1< < k.
Kk—1)2 =" SIS

Also, we search d;;(1 < i < j < k) whose the value is less than d and thus the
algorithm merge C; and Cj, if two clusters satisfy two conditions as follows:

dij — |lci — ¢;ll, d —

L |le; — ¢;|| < min(o;,05)
2. |os —oj| < (Zl + 23)7 n;,n;: the number of instances in C;, C;
i J

According to the conditions, if each center of clusters C; and C; exists in the
another cluster’s region and if difference of their deviations is quite small, they
should be treated as one cluster.

In this way, the value of k£ will be updated automatically by splitting and
merging clusters. Also, local optimum problem of the K-means algorithm can be
solved because if the k initial cluster centers were wrong, it can be modified by
splitting and merging clusters.
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4.4 Convergence Criterion

In this process, the algorithm uses the sum of the squared FEuclidean distance,

denoted by E(cy,...,ck), as the convergence criterion that is most intuitive and
frequently used function in partitional clustering techniques like the K-means.
We can calculate E(cq,...,cy) as follows:
k
2
Ecr,.er) =) > ¥ ¢l
j=1x'eC;y
where x’ is normalized instance by the proposed method. E(cy,...,cx) means

that summation of the distance between each cluster center and its instances. If
the value of E(cq,...,cy) is larger than that of last clustering, go to the labeling
process, otherwise the algorithm go back to the assignment process.

4.5 Labeling Clusters

In the existing researches, they labeled a cluster as attack if it is relatively large
or is above a given threshold, otherwise, it is labeled as normal. However, such
method has several limitations on labeling the clusters accurately, for example,
there is not a precise criterion about relatively large or a threshold, and it can
not detect an attack that causes large data instances like DoS.

Therefore, we propose a new method that does not depend on the population
ratio of the cluster nor does not require a threshold to label the clusters. Although
the initial cluster centers of the dense group are not proper as our desired centers,
since we assume that most of those is normal, we can utilize those as a criterion
for labeling. In other words, we can say that if a cluster is normal, the distance
between the center c;(1 < j < k) of the cluster and sp(s +1 < h < K) will
be small, otherwise that will be large. Thus, we first, for each cluster center
c;j(1 < j < k), calculate the maximum distance to sp(s+1 < h < K). We then
calculate the average of the maximum distances. If the maximum distance from
a cluster to sp(s + 1 < h < K) is less than the average, we label the cluster as
normal. Otherwise, label as attack.

After the labeling process is finished, we calculate the distance from a data
instance of the test data to c;(1 < j < k) and if the label of the closest cluster
from the data instance is an attack, then label the data instance as the attack.
Otherwise, label the data instance as normal.

5 Experimental Results and Analysis

In order to evaluate the proposed clustering method, we tested the algorithm on a
benchmark dataset, the network traffic data from KDD Cup 1999 Dataset[]]. We
are interested in two indicators: the detection rate and the false positive rate. The
detection rate is defined as the number of intrusion instances (correctly) detected
by the system divided by the total number of intrusion instances present in the
test set. The false positive rate is defined as the total number of normal instances
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that were (incorrectly) classified as intrusions divided by the total number of
normal instances present in the test set.

5.1 Data Set Descriptions

Training Data. In KDD Cup 1999 Dataset, the training data set consists of
approximately 4.9 million data instances. Each instance consisted of 41 features
of various types, and a class label that indicate either normal or one of the attack

types.

Test Data. The test data consists of approximately 490,000 data instances. It
contains 17 types of attack that were not present in the training data and 20
types of attack that were present in the training data.

5.2 Results

We first evaluated performance of the proposed method and K-means algorithm.
For evaluation, we randomly extracted the training and test data from KDD
Cup dataset. The training and test data consist of 90,373 and 65,108 instances,
respectively. Around 1% of the training data is attack, and the test data has
4,515 attack instances that consist of 2,275 known attack instances(i.e. included
in the training data) and 2,240 new attacks. For comparison, we obtained the
false positive rate and detection rate(i.e. ROC curve[lD]) of the two methods
by varying « and 3, and k(in case of the K-means). Parameter k was set to
3, 5, 10, 20, 50 and 100. Note that every experimental result in this paper is
averaged over 10 runs of the algorithms. The comparison of ROC curves of the
two methods is shown in figure 1(a). As we had expected, it can be easily seen
that performance of the proposed method consistently outperforms the K-means
algorithm; especially at the lower false positive. Therefore, we conclude that
superior performance of the proposed clustering method results from overcoming
four shortcoming of the K-means algorithm.

We also evaluated stability of the proposed method with respect to different
attack ratio of the training data. As the training data for this evaluation, we
prepared three different dataset where each dataset consists of 90,373 instances,
and the attack ratio of those is 1%, 5% and 10%, respectively while not changing
the above test data. We obtained the ROC curves of each case as shown in figure
1(b), and we obviously understand that performance of the proposed method is
not influenced by the ratio of attack. It means that by applying our normalization
method the average of every feature(i.e. dimension) did not move toward the
anomalies. In other words, since normalized values of the attack instances are
still far from the normal ones, the proposed clustering method was able to detect
those excellently.

5.3 Analysis

First of all, we investigated our strategy that the proposed normalization method
does not change the average of every feature(i.e. dimension) according to an
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Fig.1. ROC curves showing performance of the algorithms over KDD data set

Table 2. Average of 17 and 22 dimensions

Proposed Method Existing Method Attack Normal
Dimension 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
17 7.15 7.97 7.90 7.66 12.13 13.49 50.86 60.37 62.99 7.62 9.27 8.01
22 0.95 0.96 0.96 0.95 0.94 0.93 0.82 0.78 0.77 0.95 0.95 0.95

increase in the attack ratio. Actually, in our experiments, there were many di-
mensions that exactly correspond with our assumption, and we take an example
for 17th and 22nd dimensions as shown in Table 2. For fair comparison, we fixed
£ = 100 and changed * = 1%, ' = 5%, [ = 10% for the three training data,
its attack ratio is 1%, 5% and 10% , respectively. Our results show that by ap-
plying the proposed method, the average of each dimension(Proposed Method
in Table 2) is not only almost constant, but also almost the same as that for
only real normal data in the training data(Normal in Table 2). This invariability
of the average also means that our assumption on the dense group (i.e. most of
data instances included in the dense group is normal) is reliable. However, in
case of the existing methods(Existing Method in Table 2), fluctuation of attack
data(Attack in Table 2) induces deterioration of their average, i.e., increase of
17th dimension and decrease of 22nd one.

In additoin to superiority of the proposed method in terms of performance and
stability, the short detection time is an important factor for practical applying
as the training time. Thus, we also measured the detection time of the proposed
method. In our method, it took approximately 18 seconds to determine 65,108(
around 13% of the original test data) data instances of the test data. After all,
it will be take approximately 135 seconds to detect the whole test data of two
weeks. It means that the proposed method enables IDSs to analyze audit data
in real-time even though it requires two user defined parameters o and (3.
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6 Conclusion and Future Works

In this paper, we have pointed out the limitation on data normalization of
anomaly-based IDS and the shortcomings of the K-means algorithm. First, we
proposed a novel normalization method that can maintain constant performance
of the system irrespective of the amount of attack data. Second, for improving
performance of the K-means algorithm, we have proposed a clustering algorithm
to overcome its shortcomings in intrusion detection.

We have evaluated the accuracy of the new approach by varying two parame-
ters o and 3. Our results showed that it achieves a higher detection rate than the
K-means algorithm while maintaining a low false positive rate, and an increase
in the attack ratio does not influence performance of the proposed method. Fur-
thermore, linear time complexity and real-time detection ability of the proposed
method make it feasible for intrusion detection.

For future work, we need to verify performance of the proposed clustering
algorithm over real data and make a new benchmark dataset for intrusion de-
tection, because KDD Cup 1999 dataset was generated in the virtual reality
network (i.e. it can not reflect the reality) and the attacks included in it are
greatly old-fashioned.
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Abstract. Subspace clustering (also called projected clustering) addresses the
problem that different sets of attributes may be relevant for different clusters in
high dimensional feature spaces. In this paper, we propose the algorithm DiSH
(Detecting Subspace cluster Hierarchies) that improves in the following points
over existing approaches: First, DiSH can detect clusters in subspaces of sig-
nificantly different dimensionality. Second, DiSH uncovers complex hierarchies
of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are
embedded within higher-dimensional subspace clusters. These hierarchies do not
only consist of single inclusions, but may also exhibit multiple inclusions and
thus, can only be modeled using graphs rather than trees. Third, DiSH is able to
detect clusters of different size, shape, and density. Furthermore, we propose to
visualize the complex hierarchies by means of an appropriate visualization model,
the so-called subspace clustering graph, such that the relationships between the
subspace clusters can be explored at a glance. Several comparative experiments
show the performance and the effectivity of DiSH.

1 Introduction

The well-known curse of dimensionality usually limits the applicability of traditional
clustering algorithms to high-dimensional feature spaces because different sets of fea-
tures are relevant for different (subspace) clusters. To detect such lower-dimensional
subspace clusters, the task of subspace clustering (or projected clustering) has been de-
fined recently. Existing subspace clustering algorithms usually either allow overlapping
clusters (points may be clustered differently in varying subspaces) or non-overlapping
clusters, i.e. points are assigned uniquely to one cluster or noise. Algorithms that al-
low overlap usually produce a vast amount of clusters which is hard to interpret. Thus,
we focus on algorithms that generate non-overlapping clusters. Those algorithms in
general suffer from two common limitations. First, they usually have problems with
subspace clusters of significantly different dimensionality. Second, they often fail to
discover clusters of different shape and densities, or they assume that the tendencies of
the subspace clusters are already detectable in the entire feature space.

A third limitation derives from the fact that subspace clusters may be hierarchically
nested, e.g. a subspace cluster of low dimensionality is embedded within several larger
subspace clusters of higher dimensionality. None of the existing algorithms is able to

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 152-[163] 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Hierarchies of subspace clusters with multiple inheritance

1D cluster C

detect such important hierarchical relationships among the subspace clusters. An exam-
ple of such a hierarchy is depicted in Figure [Tl (left). Two one-dimensional (1D) cluster
(C and D) are embedded within one two-dimensional (2D) cluster (B). In addition,
cluster C' is embedded within both 2D clusters A and B. Detecting such relationships
of subspace clusters is obviously a hierarchical problem. The resulting hierarchy is
different from the result of a conventional hierarchical clustering algorithm (e.g. a den-
drogram). In a dendrogram, each object is placed in a singleton cluster at the leaf level,
whereas the root node represents the cluster consisting of the entire database. Any inner
node n represents the cluster consisting of the points located in the subtree of n. Den-
drograms are limited to single inclusion, i.e. a lower dimensional cluster can only be the
child cluster of one higher dimensional cluster. However, hierarchies of subspace clus-
ters may exhibit multiple inclusions, e.g. cluster C' in Figure[Iis a child of cluster A and
B. The concept of multiple inclusions is similar to that of “multiple inheritance” in soft-
ware engineering. To visualize such more complex relationships among subspace clus-
ters, we need graph representations rather than tree representations. Such a graph rep-
resentation which we will call subspace clustering graph (cf. Figure [[(right)) consists
of nodes at different levels. These levels represent the dimensionality of the subspace
in which the cluster is found (e.g. the level of cluster A in the graph of Figure [dlis 2).
Each object p is assigned to a unique node in that hierarchy representing the lowest
dimensional subspace cluster in which p is placed. In addition, an edge between a k-
dimensional cluster C' and an [-dimensional cluster B, where [ > k, (e.g. cf. Figure[T))
indicates that all points of cluster C' are also members of cluster 5.

In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierar-
chies) that improves in the following aspects over the state-of-the-art subspace cluster-
ing approaches: First, DiSH uncovers complex hierarchies of nested subspace clusters
including multiple inclusions. Second, DiSH can detect clusters in subspaces of signif-
icantly different dimensionality. Third, DiSH is able to detect clusters of different size,
shape, and density. Furthermore, we propose the subspace clustering graph to visual-
ize the resulting complex hierarchies by means of an appropriate visualization model.
Using this visualization method the relationships between the subspace clusters can be
explored at a glance.

The rest of the paper is organized as follows. We discuss related work in Section 2]
Section3ldescribes our new algorithm DiSH. The concepts of the clustering graph visu-
alization are outlined in Sectiondl An experimental evaluation is presented in Section[3
Section [6] concludes the paper.
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2 Related Work

Many subspace clustering algorithms, e.g. [1I213/4], aim at finding all clusters in all
subspaces of the feature space producing overlapping clusters, i.e. one point may belong
to different clusters in different subspaces. In general, these methods also produce some
sort of subspace hierarchy. However, those hierarchies are different from the hierarchy
addressed in this paper because points are allowed to be placed in clusters such that
there are no relationships between the subspaces of these clusters. Thus, the resulting
“hierarchy” is much more complex and usually hard to interpret.

Other subspace clustering algorithms, e.g. [Sl6[7], focus on finding non-overlapping
subspace clusters. These methods assign each point to a unique subspace cluster or
noise. Usually, those methods do not produce any information on the hierarchical rela-
tionships among the detected subspaces. The only approach to find some special cases
of subspace cluster hierarchies introduced so far is HiSC [8]]. However, HiSC is limited
by the following severe drawbacks. First, HiSC usually assumes that if a point p be-
longs to a projected cluster C', then C' must be visible in the local neighborhood of p in
the entire feature space. Obviously, this is a quite unrealistic assumption. If p belongs
to a projected cluster and the local neighborhood of p in the entire feature space does
not exhibit this projection, HiSC will not assign p to its correct cluster. Second, the
hierarchy detected by HiSC is limited to single inclusion which can be visualized by a
tree (such as a dendrogram). As discussed above, hierarchies of subspace clusters may
also exhibit multiple inclusions. To visualize such more complex relationships among
subspace clusters, we need graph representations rather than tree representations. Third,
HiSC uses a Single-Linkage approach for clustering and, thus, is limited to clusters of
particular shapes. DiSH applies a density-based approach similar to OPTICS [9] to the
subspace clustering problem that avoids Single-Link effects and is able to find clusters
of different size, shape, and densities.

We do not focus on finding clusters of correlated objects that appear as arbitrarily
oriented hyperplanes rather than axis-parallel projections (cf. e.g. [TOTTIT2I13]]) be-
cause obviously, these approaches are orthogonal to the subspace clustering problem
and usually demand more cost-intensive solutions.

3 Hierarchical Subspace Clustering

Let D C R® be a data set of n feature vectors and A be the set of attributes of D. For
any subspace S C A, mg(0) denotes the projection of o € D into S. Furthermore, we
assume that DIST is a distance function applicable to any S C A, denoted by DIST?, e.g.

when using the Euclidean distance, DIST® (p, ¢) = \/Zazes (T{ary(P) — W{al}(q))Q.

Our key idea is to define the so-called subspace distance that assigns small values if
two points are in a common low-dimensional subspace cluster and high values if two
points are in a common high-dimensional subspace cluster or are not in a subspace
cluster at all. Subspace clusters with small subspace distances are embedded within
clusters with higher subspace distances.

For each point o € D we first compute the subspace dimensionality representing the
dimensionality of that subspace cluster in which o fits best. Thereby, we assume that
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the “best” projection for clustering o is the subspace with the highest dimensionality
(providing the most information), or in case of tie-situations, which provides the larger
subspace cluster (containing more points in the neighborhood of o w.r.t. the subspace).
The subspace dimensionality of a point o is determined by searching for dimensions of
low variance (high density) in the neighborhood of 0. An attribute-wise e-range query
(Ng{al}(o) = {z|pIsT%}(0,2) < €} for each a; € A) yields a simple way to assign
a predicate to an attribute for a certain object o. If only few points are found within the
e-neighborhood in attribute a; the variance around o in attribute a; will be relatively
high. For this attribute we will assign O as predicate for the query point o, indicating
that this attribute does not participate in a subspace that is relevant to any cluster to
which o could possibly belong. Otherwise, if J\/'E{L“}(o) contains at least ;, objects, the
attribute a; will be a candidate for a subspace containing a cluster including object o.

From the variance analysis the candidate attributes that might span the best subspace
S, for object o are determined. These attributes need to be combined in a suitable way.
This combination problem is equivalent to frequent itemset mining due to the mono-
tonicity S C T' = |[NZ(0)| < |NZ(0)|. Thus, we can use any frequent itemset mining
algorithm (e.g. the Apriori-algorithm [[14]]) in order to determine the best subspace of
an object o.

Definition 1 (subspace preference vector/dimensionality of a point). Let S, be the
best subspace determined for object o € D. The subspace preference vector w(o) =
(wi,...,wq)T of o is defined by

_ 1 lf a; €S,
wi(o)‘{o i ¢S,

The subspace dimensionality A\(0) of o € D is the number of zero-values in the subspace
preference vector w(o).

In the example in Figure 2] the e-neighborhoods of the 3D point p in attributes = and
y are shown by gray-shaded areas. If we assume that both of these areas contain at
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least i points whereas the e-neighborhood of o along z (not shown) contains less than
|4 points, o may participate in a subspace cluster that is projected into the subspace
{z,y}. If \Ng{z’y}(oﬂ > p, then w(o) = (1,1,0)T and A\(0) = 1. Otherwise, none
of the 1D subspace clusters containing o can be merged to form a higher dimensional
subspace cluster, i.e. we assign o to the subspace containing more points.

Obviously, using any frequent itemset mining algorithm is rather inefficient for high-
dimensional data sets, especially when the dimensionality of the subspace clusters are
also high-dimensional. Thus, we further propose a heuristics for determining the best
subspace S, for an object o which scales linearly in the number of dimensions. We
simply use a best-first search:

Determine the candidate attributes of o: C'(0) = {a; | a; € AN |NZ(0)| > u}.
Add a; = arg mgﬁc){\/\/f(oﬂ} to S, and delete a; from C(0).
acC(o

1.

2.

3. Set current intersection I := N% (o).

4. Determine attribute a; = arg mg(x)ﬂ] NNZ(0)|}.
acC(o

(a) If [T NNZ(0)| > p then:
Add a; to S,, delete a; from C(o), and set [ := I N N% (o).
(b) Else: stop.
5. If C' # () continue with Step 4.

Using these heuristics to compute S, for o € D, we can determine w(o) as in
Definition [ Overall, we assign a d-dimensional preference vector to each point. The
attributes having predicate “1” span the subspace where to find a cluster containing the
point, whereas the remaining attributes are irrelevant.

We define a similarity measure between points which assigns a distance of 1, if these
two points share a common 1D subspace cluster. If they share a common 2D subspace
cluster, they have a distance of 2, etc. This similarity measure is integrated into the algo-
rithm OPTICS [9]. Sharing a common k-dimensional subspace cluster may mean differ-
ent things: Both points may be associated to the same k-dimensional subspace cluster,
or both points may be associated to different (k-1)-dimensional subspace clusters that
intersect or are parallel (but not skew). Intuitively, the distance measure between two
points corresponds to the dimensionality of the data space which is spanned by the
“combined” subspace preference vector of the two points. We first give a definition of
the subspace dimensionality of a pair of points \(p, q) which follows the intuition of
the spanned subspace and then define our subspace distance measure.

Definition 2 (subspace dimensionality of a point pair). The subspace preference vec-
tor w(p, q) of a pair of points p,q € D representing the combined subspace of p and
q is computed by an attribute-wise logical AND-conjunction of w(p) and w(q), i.e.
w;i(p,q) = wi(p) AN wi(q) (1 < i < d). The subspace dimensionality berween two
points p,q € D, denoted by \(p, q), is the number of zero-values in w(p, q).

We cannot directly use the subspace dimensionality A(p, q) as the subspace distance
because points from parallel subspace clusters will have the same subspace preference
vector. Thus, we check whether the preference vectors of two points p and ¢ are equal
or one preference vector is “included” in the other one. This can be done by computing
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the subspace preference vector w(p, ¢) and checking whether w(p, ¢) is equal to w(p)
or w(q). If so, we determine the distance between the points in the subspace spanned by
w(p, q). If this distance exceeds 2-¢, the points belong to different, parallel clusters. The
threshold e, playing already a key role in the definition of the subspace dimensionality
(cf. Definition[T)), controls the degree of jitter of the subspace clusters.

Since A(p,q) € N, we usually have many tie situations when merging points/clus-
ters during hierarchical clustering. These tie situations can be solved by considering
the distance within a subspace cluster as a second criterion. Inside a subspace cluster
the points are then clustered in the corresponding subspace using the traditional OP-
TICS algorithm and, thus, the subspace clusters can exhibit arbitrary sizes, shapes, and
densities.

Definition 3 (subspace distance). Let w be an arbitrary preference vector. Then S(w)
is the subspace defined by w and w denotes the inverse of w. The subspace distance
SDIST between p and q is a pair SDIST(p, q) = (d1, dz), where d1 = \(p, q) + A(p, q)
and dy = DISTS(PP9) (p, ¢), and A(p, q) is defined as

Alp,q) = {(1) ZS(ZJ(P, q) = w(p) vV w(p,q) = w(q)) ADIST @D (p, q) > 2

We define SDIST(p,q) < SDIST(r,s) <= SDIST(p,q).di < SDIST(r,s).dy or
(SDIST(p, q).dy = SDIST(r, s).dy and SDIST(p, q).da < SDIST(r, s).d2)).

As suggested in [9]], we introduce a smoothing factor ;. to avoid the Single-Link ef-
fect and to achieve robustness against noise points. The parameter ;o represents the
minimum number of points in a cluster and is equivalent to the parameter p used
to determine the best subspace for a point. Thus, instead of using the subspace dis-
tance SDIST(p, ¢) to measure the similarity of two points p and ¢, we use the subspace
reachability REACHDIST ,(p, ¢) = max(SDIST(p,r), SDIST(p, ¢)), where r is the -
nearest neighbor (w.r.t. subspace distance) of p. DiSH uses this subspace reachability
and computes a “walk” through the data set, assigning to each point o its smallest sub-
space reachability with respect to a point visited before o in the walk. The resulting
order of the points is called cluster order. In a so-called reachability diagram for each
point (sorted according to the cluster order along the z-axis) the reachability value is
plotted along the y-axis. The valleys in this diagram represent the clusters. The pseudo-
code of the DiSH algorithm can be seen in Figure 3l

4 Visualizing Subspace Cluster Hierarchies

The reachability plot is equivalent to tree-like representations and, thus, is not capable
of visualizing hierarchies with multiple inclusions. This is illustrated in Figures
and When exploring the reachability plots of the two different data sets A and
B, one can see that they look almost the same (cf. Figures [(b) and [(e)). Thus, taking
only the reachability plots into account, it is impossible to detect the obviously different
kind of hierarchy of the second data set. This phenomenon is due to the fact that in data
set B we face a subspace cluster hierarchy with multiple inclusion (the 1D cluster is
embedded within both 2D clusters).
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algorithm DiSH(D, u, ¢)
co— cluster order; // initially empty
pg— empty priority queue ordered by REACHDIST,;
foreach pc D do
compute w(p);
p.REACHDIST,, + 00
insert p into pq;
while (pg#0) do
o« pg.next();
r «— p—nearest neighbor of o w.r.t. SDIsT;
foreach p e pg do
new_sr « max(SDIST(o,r),SDIsT(0,p));
pq.update (p, new_sr);
append o to co;
return co;

Fig. 3. The DiSH algorithm

This limitation of the reachability plot leads to our contribution of representing the
relationships between cluster hierarchies as a so-called subspace clustering graph such
that the relationships between the subspace clusters can be explored at a glance. The
subspace clustering graph displays a kind of hierarchy which should not be confused
with a conventional (tree-like) cluster hierarchy usually represented by dendrograms.
The subspace clustering graph consists of nodes at several levels, where each level rep-
resents a subspace dimension. The top level represents the highest subspace dimension,
which has the dimensionality of the data space. It consists of only one root node rep-
resenting all points that do not share a common subspace with any other point, i.e. the
noise points. Let us note that this is different to dendrograms where the root node rep-
resents the cluster of all objects. The nodes in the remaining levels represent clusters in
the subspaces with the corresponding dimensionalities. They are labeled with the pref-
erence vector of the cluster they represent. For emphasizing the relationships between
the clusters, every cluster is connected with its parents and its children. In contrast to
tree representations, like e.g. dendrograms, a graph representation allows multiple par-
ents for a cluster. This is necessary, since hierarchical subspace clusters can belong to
more than one parent cluster. Consider e.g. data set B, where the objects of the inter-
section line are embedded in the horizontal plane as well as in the vertical plane, i.e.
the cluster forming the intersection line belongs to two parents in the hierarchy. The
subspace clustering graphs of the two data sets A and B are depicted in Figures
and (1)} The line of data set A is represented by the cluster with the preference vector
[1,0,1]. This cluster is a child of cluster [1,0,0] representing the plane in data set A (cf.
Figure [A(c)). The more complex hierarchy of data set B is represented in Figure
where the cluster [1,0,1] belongs to two parent clusters, the cluster of the horizontal
plane [0,0,1] and the cluster of the vertical plane [1,0,0].

In contrast to dendrograms, objects are not placed in singleton clusters at the leaf
level, but are assigned to the lowest-dimensional subspace cluster they fit in within
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Fig. 4. Different hierarchies in 3-dimensional data

method extractCluster (ClusterOrder co)
cl «— empty list; // cluster list
foreach o< co do
p < o.predecessor,
if (Ace c1 with w(c) =w(o,p) Adistyop(o,c.center) <2-¢) then
create a new c;
add ¢ to ci;
add o to c;
return ci;

Fig. 5. The method to extract the clusters from the cluster order

the graph. Similar to dendrograms, an inner node n of the subspace clustering graph
represents the cluster of all points that are assigned to n and of all points assigned to its
child nodes.

To build the subspace clustering graph, we extract in a first step all clusters from the
cluster order. For each object o in the cluster order the appropriate cluster ¢ has to be
found, where the preference vector w(c) of cluster ¢ is equal to the preference vector
w(o, p) between o and its predecessor p. Additionally, since parallel clusters share the
same preference vector, the weighted distance between the centroid of the cluster ¢ and
object o with w(o, p) as weighting vector has to be less or equal to 2¢. The complete
method to extract the clusters from the cluster order can be seen in Figure

After the clusters have been derived from the cluster order, the second step builds the
subspace cluster hierarchy. For each cluster we have to check, if it is part of one or more
(parallel) higher-dimensional clusters, whereas each cluster is at least the child of the
noise cluster. The method to build the subspace hierarchy from the clusters is depicted
in Figure
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method buildHierarchy (c1)
d «— dimensionality of objects in D;
foreach ¢; € c1 do
foreach ¢; € c1 do
if (A, >)\;) then
d distw(c“cj)(ci .center,c;.center);
if (\;=d V(d<2-e ANce c1 :ceci.parentsAAc<>\cj)) then
add ¢; as child to ¢;;

Fig. 6. The method to build the hierarchy of subspace clusters
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(b) Subspace clustering graph.

Fig. 7. Results on synthetic dataset DS1

Table 1. Runtime, precision and recall w.r.t. the strategy for preference vector computation

APRIORI  BEST-FIRST

DS1 DS2 DS3 DS1 DS2 DS3

runtime [sec] 147 32 531 76 14 93
precision [%] 99.7 99.5 99.7 99.7 99.5 99.5
recall [%] 99.8 99.6 99.8 99.8 99.6 99.5

5 Experimental Evaluation

We first evaluated DiSH on several synthetic data sets. Exemplary, we show the results
on three data sets named “DS1”, “DS2”, and “DS3”.

We evaluated the precision, recall and the runtime of our DiSH algorithm w.r.t.
the strategies used for determination of the preference vectors. The strategy using the
Apriori-algorithm [[14] is denoted with “APRIORI”, the heuristics using the best-first
search is denoted with “BEST-FIRST”. The results of the runs with both strategies on
the three data sets are summarized in Table[I]l Since the heuristics using best-first search
outperforms the strategy using the Apriori-algorithm in terms of runtime and has almost
equal precision and recall values, we used in all further experiments the heuristics to
compute the preference vectors rather than the Apriori-based approach.

Data set “DS1” (cf. Figure[7(a)) contains 3D points grouped in a complex hierarchy
of 1D and 2D subspace clusters with several multiple inclusions and additional noise
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points. The results of DiSH applied to DS1 are depicted in Figure As it can be
seen, the complete hierarchical clustering structure can be obtained from the resulting
subspace clustering graph. In particular, the complex nested clustering structure can be
seen at a glance. Data set “DS2” is a 5D data set containing ten clusters of different di-
mensionality and noise: one cluster is embedded in a 4D subspace, four clusters are 3D,
three clusters are 2D and two clusters are 1D subspace clusters. The resulting subspace
clustering graph (not shown due to space limitations) produced by DiSH exhibits all
ten subspace clusters of considerably different dimensionality correctly. Similar obser-
vations can be made when evaluating the subspace clustering graph obtained by DiSH
on data set “DS3” (not shown due to space limitations). The 16D data set DS3 contains
noise points, one 13 dimensional, one 11 dimensional, one 9 dimensional, one 7 di-
mensional cluster, and two 6 dimensional clusters. Again, DiSH found all six subspace
clusters correctly.

We also applied HiSC, PreDeCon and PROCLUS on DS1 for comparison. Neither
PreDeCon nor PROCLUS are able to detect the hierarchies in DS1 and the subspace
clusters of significantly different dimensionality. HiSC performed better in detecting
simple hierarchies of single inclusion but fails to detect multiple inclusions.

In addition, we evaluate DiSH using several real-world data sets. Applied to the
Wisconsin Breast Cancer Database (original) from the UCI ML Archive] (d = 9, n =
569, objects labeled as “malignant” or “benign”) DiSH finds a hierarchy containing

! http://www.1ics.uci.edu/~“mlearn/MLSummary.html
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Fig. 10. Scalability results

several low dimensional clusters and one 7D cluster (¢ = 0.01, p = 15). An additional
9D cluster contains the noise points. It is worth mentioning that the reported clusters
are pure. In particular, the seven low dimensional clusters only contain objects labeled
as “benign”, whereas the 7D cluster only contains objects marked as “malignant”.

We applied DiSH on the Wages data sef] (d = 4, n = b534). Since most of the
original attributes are not numeric, we used only 4 dimensions (YE=years of education,
W=wage, A=age, and YW=years of work experience) for clustering. The resulting sub-
space cluster hierarchy (using € = 0.001, 1 = 9) is visualized in Figure[8l The nine par-
allel clusters having a subspace dimensionality of A\ = 3 consist of data of people having
equal years of education, e.g in cluster [1,0,0,0 0] YE=17 and in cluster [1,0,0,0 5]
YE=12. The two clusters labeled with [1,1,0,0 0] and [1, 1,0, 0 1] in the 2D subspace
are children of cluster [1,0,0,0 5] and have (in addition to equal years of education,
YE=12) equal wages values (W=7.5 and W=5, respectively). The 1-dimensional clus-
ter [1,0,1, 1] is a child of [1,1,0,0 0] and has the following properties: YE=12, A=26,
and YW=8.

Last but not least, we applied DiSH to the yeast gene expression data set of
(d = 24, n =~ 4,000). The result of DiSH (using ¢ = 0.01, x = 100) on the gene
expression data is shown in Figure [0l Again, DiSH found several subspace clusters of
different subspace dimensionalities with multiple inclusions.

The scalability of DiSH w.r.t. the data set size is depicted in Figure [[0(a) The ex-
periment was run on a set of 5D synthetic data sets with increasing number of objects
ranging from 10,000 to 100,000. The objects are distributed over equally sized sub-
space clusters of subspace dimensionality A = 1,...,4 and noise. As parameters for
DiSH we used € = 0.001 and ¢ = 20. As it can be seen, DiSH scales slightly super-
linear w.r.t. the number of tuples. A similar observation can be made when evaluating
the scalability of DiSH w.r.t. the dimensionality of the data set (cf. Figure [I0(b)). The
experiments were obtained using data sets with 5,000 data points and varying dimen-
sionality of d = 5,10, 15,...,50. For each data set the objects were distributed over
d — 1 subspace clusters of subspace dimensionality A = 1,...,d — 1 and noise. Again,
the result shows a slightly superlinear increase of runtime when increasing the dimen-
sionality of the data set. The parameters for DiSH were the same as in the evaluation of
the scalability of DiSH w.r.t. the data set size (¢ = 0.001 and p = 20).

http://1ib.stat.cmu.edu/datasets/CPS 85 Wages
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6 Conclusions

In this paper, we presented DiSH, the first subspace clustering algorithm for detecting
complex hierarchies of subspace clusters. DiSH is superior to the state-of-the-art sub-
space clustering algorithms in several aspects: First, it can detect clusters in subspaces
of significantly different dimensionality. Second, it is able to determine hierarchies of
nested subspace clusters containing single and multiple inclusions. Third, it is able to
detect clusters of different size, shape, and density. Fourth, it does not assume that the
subspace preference of a point p is exhibited in the local neighborhood of p in the entire
data space. We have shown by performing several comparative experiments using syn-
thetic and real data sets that DiSH has a superior performance and effectivity compared
to existing methods.
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Abstract. An outlier is an object that does not conform to the normal behavior
of the data set. In data cleaning, outliers are identified for data noise reduction.
In applications such as fraud detection, and stock market analysis, outliers
suggest abnormal behavior requiring further investigation. Existing outlier
detection methods have focused on class outliers and research on attribute
outliers is limited, despite the equal role attribute outliers play in depreciating
data quality and reducing data mining accuracy. In this paper, we propose a
novel method to detect attribute outliers from the deviating correlation behavior
of attributes. We formulate three metrics to evaluate outlier-ness of attributes,
and introduce an adaptive factor to distinguish outliers from non-outliers.
Experiments with both synthetic and real-world data sets indicate that the
proposed method is effective in detecting attribute outliers.

Keywords: Outlier detection, Data cleaning.

1 Introduction

An outlier is an object exhibiting alternative behavior in a data set. It is a data point
that does not conform to the general patterns characterizing the data set. Detecting
outliers has important applications in data cleaning as well as in the mining of
abnormal patterns for fraud detection, stock market analysis, intrusion detection,
marketing, network sensors, email spam detection, among others.

There are two types of outliers, the class and the attribute outliers [1]. A class
outlier is a multivariate data point (tuple) which does not fit into any class by
definitions of distance, density, or nearest-neighbor. An attribute outlier, in general
sense, is an external error introduced to the attribute values. In this paper, we formally
define attribute outlier as a univariate point which exhibits deviating correlation
behavior with respect to other attributes.

Existing outlier detection methods focus primarily on class outliers, although for a
number of reasons, detecting attribute outliers is an equally important data mining
problem. First, class outliers are often the result of one or more attribute outliers.
Correcting or eliminating only the affecting attributes rather than the tuples has the
advantage of fixing the abnormal behaviors while retaining information. Second, even
when attribute outliers do not affect class memberships, they may still interfere with
the data analysis mechanisms as data noise. Third, for many real-world data sets that
do not contain class attributes, it is still meaningful to identify attribute outliers which

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 164 2007.
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are sources of errors. One example is the UniProt database which contains the
functional, structural, and physico-chemical descriptions of proteins [2]. Though there
is no meaningful class attribute for proteins, maintaining correctness of every detail
provided in these records is critical, given that they are extensively referenced by the
world-wide biological researchers for analysis and experimental planning.

Since attribute outliers do not arise from the context of class outliers, they cannot
be defined from the view point of the latter. The nature of problems associated with
class and attribute outliers differ and separate detection methods are needed. We
propose a novel correlation-based approach for attribute outlier detection in data
subspaces. We call the outlier detection method ODDS to denote attribute Outlier
Detection from Data Subspaces. Specific contributions of this paper include:

1. A formal definition of attribute outliers based on the correlation behavior of
attributes in data subspaces.

2. Three new metrics O-measure, P-measure and Q-measure to quantify the deviating
correlation behavior of an attribute. O-measure is the most accurate while Q-
measure is computationally less intensive. P-measure is devised for sparse data sets
containing vast occurrences of rare attribute values which are not outliers.

3. An adaptive Rate-of-change factor for the selection of optimal thresholds that
distinguishes the outliers from non-outliers in any given data set. These automatic
and data-dictated thresholds remove dependency on user-defined parameter.

4. The ODDS algorithm which systematically detects attribute outliers in data
subspaces, and two filtering strategies to quickly identify subspaces that do not
contain attribute outliers.

The rest of this paper is organized as follows. A motivating example is given in the
next section. Related works are discussed in Section 3. Formal definitions are detailed
in Section 4. In Section 5, we present the ODDS algorithm. Experimental evaluations
are presented in Section 6, and we conclude in Section 7.

2 Motivating Example

We first illustrate the rationale of our deviation metrics for attribute outlier detection
using the example in Table 1 and Figure 1.

Table 1. World Clock data set containing 4 attribute outliers. W, Y and Z are erroneous entries,
while X is an uncommon abbreviation of ‘British Columbia’.

Country State City Day Time’ Weather
1 US.A California LA Tue 8:40pm Sunny
2 U.S.A California LA Tue 8:40pm Rainy
3 U.S.A California Vancouver® Wed” 8:40pm Sunny
4 US.A California LA Tue 8:40pm Storm
5 U.S.A California LA Tue 8:40pm Snow
6 Canada British Columbia Vancouver Tue 8:40pm Storm
7 Canada British Columbia Vancouver Tue 8:40pm Sunny
8 Canada California®™ Vancouver Tue 8:40pm Rainy
9 Canada B.CX Vancouver Tue 8:40pm Rainy
10 Canada British Columbia Vancouver Tue 8:40pm Rainy
11 Micronesia Ponape Palikir Wed 2:40pm Storm

" Class attribute W.XY.Z Attribute outliers
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Fig. 1. Selected attribute combinations of the World Clock dataset and their supports

First, we observed that tuples with one or more rare values may possibly be class
outliers, but for attribute outliers, rarity does not equate abnormality. Consider Case
C in Figure 1 — the tuple is a perfectly legitimate class outlier belonging to the rare
class of 2:40pm’ in Table 1. However, the attributes of ‘Micronesia’, ‘Ponape’ and
‘Palikir’, though rare in individual dimensions of Country, State and City, are
consistent in their correlation behavior and are not erroneous. In a similar example, 3
out of 208,005 tuples in the UniProt protein database (Release 7.1) contain the values
<’Parkin’,'PKRN’,‘S-nitrosylation’> for attributes Protein name, Gene name and
Keyword respectively. Despite rarity in their dimensions, they are not attribute
outliers. In reality, few known protein sequences are associated with the Parkinson
disease, but they are consistently known as Parkin, are products of PKRN gene, and
are post-translationally modified by nitrosylation.

Rarity may be a good indicator for class outlier-ness. But for attribute outliers,
observations should be drawn from the correlation behavior of attributes. Consider
Case A — while ‘Vancouver’ and ‘Canada’ co-occur in five tuples, only one sub-tuple
of <’Canada’,‘California’> and of <‘California’,"Vancouver’> exist. Intuitively,
greater differences in the sub-tuple supports indicate higher likelihood that
‘California’ is an outlier in combination <’Canada’,‘California’,‘Vancouver’>. This
forms the basis of our outlier metrics. The same analogy identifies X in Case B.

In certain sparse data sets such as the UniProt database, finding the vast
occurrences of rare attribute values such as ‘B.C’ in Case B is not of prime interest.
Unlike ‘California’ in Case A, ‘B.C’ is not necessarily erroneous. Therefore, the
P-measure metric is designed to disfavor rare values from attribute outlier detection.

In real-world databases, a tuple often contain multiple attribute outliers. Due to the
interferences of the correlation patterns, it is difficult to determine multiple attribute
outliers from an attribute combination. However, an attribute outlier can be isolated at
lower dimensional attribute combinations. Consider Case D — the two attribute
outliers are separated when they are projected into different 4-attribute sub-tuples.
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Our proposed ODDS algorithm systematically iterates through data subspaces
which are projected relations of two or more attributes. Distinguishing attribute
outliers as local deviators in data subspaces also has the benefit of eliminating
interferences of noisy and uncorrelated dimensions with the outlier detection
algorithms. For example, the Weather dimension in Table 1 does not relate to any
other attributes but contain non-deterministic/random values interfering with the
outlier detection mechanisms.

To isolate the attribute outliers from non-outliers, users typically need to define a
threshold. This is not viable in practice, given that the number of outliers in the real
world dataset varies depending on the noise level of the data set and the data
dimension under study. In the ODDS algorithm, the optimal threshold is determined
from the maximal Rate-of-change which intuitively marks the point where sorted
outlier scores drastically change. Rate-of-change is the natural boundary separating
the outliers and non-outliers, and it removes the dependency of the outlier detection
on any user-specified parameter.

3 Related Works

Among the few attribute outlier detection methods are distribution-based approaches
that eliminates attribute values that do not fit into the distribution models of the data
set [3, 4]. Accuracy of distribution-based methods largely depends on the best-fit
distribution models used, and they are limited to finding obvious off-scale values.

Data polishing approaches to attribute outlier detection problem construct for each
dimension a classifier based on the remaining dimensions and the class dimension
[1, 5]. Incorrect predictions are flagged as attribute outliers. The accuracy varies
depending on the classifier used and they mainly focused on attribute outliers
resulting in change of class membership.

Class outlier detection methods have been extensively studied. Clustering-based
algorithms generate outliers as “miniature” clusters, either though optimizing cluster
size and relative distance from neighboring clusters [6], or eliminating clusters at
longest edges of a Minimum Spanning Tree (MST) [7]. These methods generally
suffer from expediting cost as data dimensionality and size increases.

Density-based class outlier detection methods measure the number of tuples in the
surrounding neighborhoods [8]. Because of the large number of k-nearest neighbor
queries, computational cost is high but may be reduced through pruning mechanisms
[9, 10]. They are restricted to continuous data sets measurable by proximities.

Distance-based approaches define a class outlier by the f fraction of other data
points which are less than k distance from it [11]. Native methods do not scale well
with data dimensionality and size but this can be reduced by pruning in data partitions
or p-tree data structures [12, 13]. Also, the accuracy of distance-based methods is
highly dependent on the user parameters f and k. Too high B leads to more false
positives while low k causes more false negatives.

Comparatively, the proposed ODDS method is applicable to categorical data, and
can be extended to continuous data by discretizing the values into bins. Further, the
ODDS method is parameter-less; the thresholds are determined using an adaptive
factor generated from the data set.
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4 Definitions

In this section, we formalize the notion of an attribute outlier and give definitions of
the metrics used in our algorithm.

Definition 1 (Support). Let R be a relation with m attributes A, A,,..., A,. Let Sbe a
projection of degree (v-u+l) on R over attributes A,,..., Ay, S=7x, ,.,A‘(R)' The

support of a tuple s in S, denoted by sup(s), is the count of the tuples in R that have
the same values for attributes A,,..., A, as tuple s.

For example, consider the World-Clock relation R(Country, State, City, Day, Time,
Weather) in Table 1, and a projected relation over three attributes,
S =T punirs State City (R) The support of tuple <’U.S.A’, ‘California’, ‘LA’> in S is 4

since tuples 1, 2, 4 and 5 in R have the same attribute values for Country, State and
City. Similarly, sup(<’Canada’, ‘California’, ‘Vancouver’>) = 1.

Definition 2 (Neighborhood). Let tuple s=<a,,..., a,>. Without loss of generality, we
consider A, as the target attribute whose extent of deviation we are interested to
determine. The neighborhood of A, w.r.t s is defined as N(A,, s) = <a,..., a,.;>. The
support of N(A,, s) is the count of tuples in R with the same values a,,..., a,.; for
A,..., A

Continuing from the last example, consider tuple s=<’Canada’, ‘California’,
‘Vancouver’> in the projected relation S. The neighborhood of the State attribute in
tuple s, denoted as N(State, s) is the sub-tuple <’Canada’, ‘Vancouver’>. Since the
same values of ‘Canada’ and ‘Vancouver’ for attributes Country and City respectively
are found in tuples 6, 7, 8, 9 and 10 of R, we have sup(N(State, s)) = 5.

Our objective is to determine attributes which deviate from its neighbors in the
projected relations. We formulate three metrics O-measure, P-measure and Q-measure
to quantify the extent of deviation.

Definition 3 (O-measure). The O-measure (Outlier measure) of target attribute A,
w.r.t. s is defined as

v-1
Zsup(N(Ans))
O —measure \A,.s)= =)
measure( v 3) Sup(N(A“,S))

The lower the O-measure score, the more likely attribute A, is an attribute
outlier in s. Let us compute the O-measure of the attribute outlier W in Table 1. Let
s=<’Canada’, ‘California’, ‘Vancouver’> be a tuple of § = T Country.State Ciry(R)' The

support of N(State, s) is 5 while sup(N(Country, s)) and sup(N(City, s)) are both 1.
The O-measure of the State attribute w.r.t. s is (1+1)/5=0.4.

For comparison, we also compute the O-measure of the State attribute in tuple
t=<"U.S.A’, ‘California’, ‘LA’>. We have O-measure(State, t) = (sup(N(Country, t))
+ sup(N(City, t))) / sup(N(State, t)) = (4+5)/4 = 2.25. ‘California’ is an attribute
outlier in attribute combination s but not in t, therefore O-measure(State, s) is
relatively lower than O-measure(State, t). Recall that the outlier metric should not
consider rare classes or events as attribute outliers. This is evident using O-measure
where the high O-measure(Country, <’Micronesia’, ’Ponape’, "Palikir’>) = 2 prevents
the mis-interpretation of Micronesia as an attribute outlier.

ey
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Definition 4 (P-measure). Let freq(A,) be the frequency of an attribute A, in the
original relation R. The P-measure of A, w.r.t a tuple s is defined as

v=l
sup(N(A4;,s
P —measure(A,,s) :—g‘: p( ( ,’ )) 2
" sup(N(A,5))freq(A,)

P-measure takes into account the support of A, in R. A lower weightage is given to
the rare attribute values which have lower frequencies. Unlike O-measure, P-measure
favors non-rare values and is more effective in identifying attribute outliers in sparse
data set which contained vast occurrences of rare attribute values which are not
attribute outliers.

Consider the attribute outlier X in Table 1. Given the low frequency of the value
‘B.C.” in the data set, the low O-measure score almost guarantee that the State
attribute in s= <’Canada’, ‘B.C.’, ‘Vancouver’> will be labeled as an outlier, that is,
O-measure(State, s)=(1+1)/4=0.5. In contrast, P-measure(State, s) = (1+1)/(4*0.09) =
5.6 is relatively much higher.

Definition 5 (Q-measure). The Q-measure of an attribute A w.r.t tuple s is defined as

sup(s)
sup(I\E(A,s)) )

Let a be the attribute value of A. Q-measure is the conditional probability of a tuple
having the value a for attribute A, given that the tuple has the same attribute values as
the neighborhood of A. Relating this back to the attribute outlier W in Table 1, Q-
measure(State, <’Canada’, ‘California’, ‘Vancouver’>) = 1/5 =0.2.

Computationally, it is less intensive to use Q-measure as the outlier detection
metric because less calculation of the supports of neighborhoods is required. This is
however, at the expense of accuracy performance which we will show in Section 6.

Q — measure(A,s) =

Definition 6 (CA-Outlier). Let S be relation of n tuples S={si,..., s,}. Given a
threshold B, a Correlation-based Attribute (CA-)outlier is a paired set (A, s;), 1<i<n
such that the deviation scores of A w.r.t s; based on an outlier metric is less than p.
Optimal value of B can be automatically derived using Rate-of-change.

Definition 7 (Rate-of-change). Given an attribute A and the set of O-measure(A, s;)
Vs, € S, 1< i< n. Let L be the list of tuples s; sorted in ascending order of O-

measure(A, s;). The Rate-of-change of a ranked tuple s; (2<i<n) is defined as

Rate — of — change(s;) = O — measure(A,s;) = O — measure(A,s,,)

“

The same formula can be applied to determine the Rate-of-change based on the P-
measure and Q-measure metrics.

O — measure (A, Si )

5 Algorithms

We regard attribute outlier as a local deviator which exhibits alternative correlation
behavior in a data subspace. Consider a relation R with m attributes and n tuples. In
the worst case, scanning all data subspaces (or projected relations) in R require
O(nx2™) searches where 2™ is the total number of projected relations on R. Therefore,
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Increasing
Frequency

Fig. 2. Attribute combinations at projections of degree k with attribute outliers b and d. The
numerical values at the top right corner of the combinations are the corresponding supports.

computing the O-measure scores for each attribute w.r.t every projected relations
requires O(2"™xnxm) time complexity. Obviously, the brute-force approach of
searching every data subspaces of a relation for CA-outliers is highly inefficient. To
overcome this limitation, we propose two filtering strategies to identify and prune
data subspaces that cannot possibly contain an attribute outlier.

Figure 2 shows the attribute combinations in a relation of 5 attributes. We assume
that all possible projections of the relation are completely enumerated. Intuitively, a
frequent tuple of any projected relation cannot be a CA-outlier. Our first strategy
filters any tuple s with sup(s) > minsup, s and its sub-tuples from the calculation of
the outlier scores. Pruning of sub-tuples follows the Apriori property: supports of sub-
tuples increase across projected relations of decreasing degrees. For example,
sup(<’A’,D’,C’,‘d’,'E’>) < sup(<’A’,‘C’,'d’,E’>) < sup(<’A’,‘C’,°E’>). In Figure 2,
setting minsup at 20 will prune off <’A’,'B’,°C’,'D’,’E’> with sub-tuples
<A’,B’,CL,E’>and <’A’,CLE>.

The second filtering strategy only applies to the Q-measure metric which exhibits
the monotone property. We prove that if ‘b’ is a CA-outlier in a tuple s based on Q-
measure, it is also CA-outlier in the sub-tuples of s.

Property 1. Let s be a tuple in projected relation S. An attribute A is a CA-outlier
w.r.t s based on Q-measure implies that A is a CA-outlier w.r.t any sub-tuple of s
which also contains A.

Proof. Let b be a CA-outlier w.r.t s=<’A’,’b’,”C’,’D’> detected using the Q-measure
deviation metric. Let s' be a sub-tuple of s. Let § be the optimal threshold such that for
any CA-outlier A, Q-measure(A, s)< 3. Based on the Apriori property, we have

sup(N (b, s)) <sup(N(b,s"))

sup(b) < sup(b)
sup(N(b,s")) ~ sup(N(b, s))

Q—measureb,s') = =Q—measureb, s) <

Hence, b is also a CA-outlier in s'. Sub-tuples of any CA-outlier found using Q-
measure in an attribute combination are eliminated from deviation computation. In
Figure 2, sub-tuples <*A’,’b’,’C’>, <’A’,’b’,’E’> and <’b’,’C’,’E’> are omitted when



Correlation-Based Detection of Attribute Outliers 171

‘b’ is detected a CA-outlier in <’A’,’b’,’C’E’>. Beyond reducing the time
complexity of the outlier score calculation; this property enables reduction of the time
for enumerating the projections.

Algorithm 1 shows the details of the ODDS algorithm. A top-down iteration over
the data subspaces, starting from the original relation R to the projected relations at
level 3 is performed [line 6]. The tuples or attribute combinations are stored into a list
L. Iteration begins by eliminating tuples which have frequency or supports greater
than minsup from L [line 4-6]. The program terminates if the list L is empty [line 8].

The metrics are computed for each target attribute of each attribute combinations at
level i [line 10-20]. Note that for Q-measure, it is not necessary to iterate over
neighborhoods (unlike O-measure or P-measure) of the target attribute and is
therefore computational cheaper. Further, Property 1 provides effective pruning for
Q-measure. Tuples belonging to the (i-1) data subspaces are generated from the
existing tuples in L at the end of each iteration [line 25-26]. For each dimension,
Get_CA-outliers function accepts a list of all attributes of the same dimension and its
corresponding O-, P-, or Q-measure values. These attribute points are sorted in
ascending values of their deviation scores [line 1, Get_CA-outliers] to identify the
maximum Rate-of-change [line 5, Get_CA-outliers]. Attribute points above max
Rate-of-change are output as CA-outliers [line 6-8].

ALGORITHM 1. ODDS Attribute Outliers Detection method

INPUT: Enumerated projections of degree 1..k for relation R with m
attributes. User input minsup.

OUTPUT: CA-outliers and the corresponding tuples of projected relations

1. 1Initialize List L

2 Insert into L projected relations of degree m of R
3 From degree 1 = m to 3 do

4. For each tuple s in L

5. Remove s if sup(s) 2 minsup

6 Endfor

7 If L is empty then

8. Terminate program //end data subspace.

9. EndIf

10. For each tuple s in L do

11. For each target attribute A in s do

12. Q-measure(A,s)=sup(s)/sup(N(A,s))

13. O-measure (A, s)=0

14. For each neighbors C; of A do

15. O-measure (A, s) =O-measure (A, s)+sup (N(C;, s))
16. Endfor

17. O-measure (A, s)=O-measure(A) /sup (N(A,s))
18. P-measure (A, s) =O-measure (A, s) /sup (A)
19. Endfor

20. Endfor

21. For each target A do // compute Rate-of-change
22. OUTPUT Get_CA-outliers (sj)

23. Enddo

24. Remove in L sub-tuples of the detected CA-outliers // Q-measure
25. Extract all tuples s in L

26. Insert into L sub-tuples of s of degree i-1

27. Endfor

FUNCTION. Get_CA-outliers

INPUT: List of attributes A; and subsets with 0-, P- or Q-measure values
OUTPUT: CA-outliers according to adaptive Rate-of-change thresholds

1. B « Ay sorted in ascending order of measure (A;)

2. For each point b;, 2<i<|Bj| o

3. Rate-of-change(b;i) = (b; - bi_1)/ bs // rate of change

4 Endfor
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# « 1 with max Rate-of-change (b;)
For each b;, 1< j £ R do

OUTPUT CA-outliers « b;
Endfor

o J o um

6 Experimental Validation

Experiments were performed on a Pentium-IV 3.2GHz computer with 2GB of main
memory, and running Windows XP.

6.1 World Clock Dataset

The synthetic data set contains 9 attributes and 50,000 tuples generated from
http://www.timeanddate.com/worldclock/. The original data set is free of any form of
data noise, thus preventing the implicit noise in the original data set from interfering
with the artificial noise introduced.

In order to evaluate the performance of ODDS at varying numbers of attribute
outliers per tuple, we introduce x artificial attributes outliers to a random tuple in the
data set. These attributes are assigned random values from their respective domains.
The four datasets containing x=1, 2, 3, and 4 outliers per tuple are denoted X1, X2,
X3 and X4 respectively. For example, X2 has 2,500 CA-outliers distributed across
1,250 tuples, each containing 2 attribute outliers. We also generate a Mix3 dataset by
randomly inserting 1 to 3 artificial attribute outliers to each randomly selected tuple.

The maximum Rate-of-change is the point where the outlier scores change
significantly. Figure 3 shows the thresholds for individual attributes derived from the X1
data set using the Rate-of-change on the O-measure scores in ODDS. These thresholds
are used as the cut-off to determine the outliers (positives) from the non-outliers
(negatives). Table 2 shows that an F-score of 100% is achieved for X1, indicating that
the O-measure is effective in quantifying the extent of deviation in attribute outliers, and
that the Rate-of-change accurately derives the optimal cut-off points. Subsequent
experiments utilize the Rate-of-change factors as default selection for thresholds.

Table 2 shows the performance of ODDS at varying number of CA-outliers per
tuple. With only 9 attributes, it is not surprising that the false-negatives escalate when
tuples contain 4 or more CA-outliers per tuple. For data sets containing between 1
to 3 attribute outliers in each tuple, the outlier detection method can achieve an F-
score of between 73% and 100%. We expect that real-world data set will contain a
mixture of different number of attribute outliers in each tuple. For this, ODDS
achieves an F-score of 88% for the Mix3 data set.

In reality, we do not know the number of attribute outliers that may be present in
each tuple of a database. The ODDS approach systematically searches for CA-
outliers, identifying tuples with only one outlier at the data subspaces of the highest
degree k (i.e. complete tuple), and others at the subsequent lower degree projections.

The Mix3 data set is used to evaluate the performance of ODDS algorithm using
O-measure, P-measure and Q-measure metrics respectively. On manual inspection,
we find that these misses are in fact rare outlier countries which have been penalized
by their low supports in the dataset (e.g. Chile, Iraq, Poland). The accuracy of ODDS
converges across the projected relations of degree k, starting from k=7, with
decreasing false negatives as the number of attribute outliers detected accumulate.
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R f-change for ining the outlier i for X1
® Sunrise, 337
Sete. 311 Table 2. Performance of ODDS at
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Fig. 3. Rate-of-change for individual attributes in X1 Mix3 79 L) 88

Figure 4 shows the F-score is between 70% to 80% with O-measure and Q-measure.
For P-measure, the number of FNs is higher.

ODDS with O-measure and Q-measure perform consistently better than classifier-
based methods using decision tree C4.5 [1, 5]. Its performance is also stable when the
percentage of outlier noise increases. As the percentage of attribute outliers in the data
set increases, the correlations between attributes decreases, thus affecting the accuracy
of the correlation-based outlier detection approach.

Accuracy of different attribute outlier metrics Comparison of attribute outlier detection methods for
Mix3 data set

100

100 —e— ODDS (O-
80 0l e— reasue)
1 —x— ODDS (Q-
60 1 o 80 measure)
w0 —— Q-measure : 70 4 oDDS (P-
—o— P-measure 60 measure)

20 A —%—C45

50 +

40
9 8 7 6 5 4 3 1% 5% 10% 15% 20%

F-score

F-score

Degree of projected relations Noise Level

Fig. 4. Accuracy of ODDS metrics converges  Fig. 5. Performance of ODDS compared with
in data subspaces of lower degrees in Mix3 classifier-based attribute outlier detection

6.2 UniProt Dataset

The UniProt database (release 7.1) consists of 2,826,395 protein sequence records are
collected from multiple sources of large-scale sequencing projects and is frequently
accessed by the world-wide biological researchers for analysis and data mining [2].
UniProt/TrEMBL records are computationally annotated, thus the protein functions
are predicted rather than verified experimentally, they contain a significant portion of
mis-annotations or erroneous information [14, 15]. We apply ODDS on the UniProt
database to identify discrepant annotations from 5 key attributes.

Table 3 shows that the protein name PN, gene name GN, synonym SY each
contain more than 100,000 unique values. These large numbers suggest that the
UniProt database is highly sparse. In fact, the naming of proteins and genes are often
left to the discretion of the experimentalists who submit these sequences into the
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Table 3. Performance of ODDS at varying number of CA-outliers per tuple

Attribute  Distinct values Multiple values Description
OR 6 No Organism source of the protein
Kw 898 Yes Keywords subject reference for the protein
GO 8486 Yes Gene ontology controlled vocabulary of proteins’ properties.
PN 669,151 No Proposed official name of protein
SY 126,299 Yes List of synonyms of the protein

Table 4. CA-outliers detected in UniProt. Brackets contain number of affected records

CA-outliers detected at OR PN KW GO SY
3-attribute combinations 27 (73) 45 (24) 56 (31) 17 (97) 18 (5)
4-attribute combinations 333 (553) 136 (6033) 276 (196) 378 (2196) 186 (124)
5-attribute combinations 195 (45) 40 (13) 57 (17) 308 (2365) 132 (56)
Accumulated (671) (6070) (241) (2365) (185)

Table 5. Manual verification of GO CA-outliers detected in UniProt data set

Annotation CA-outliers TP FP Indet.
CA-outliers detected at 3-attribute combinations 17 6 5 6
CA-outliers detected at 4-attribute combinations 378 65 221 92
CA-outliers detected at 5-attribute combinations 308 31 136 141

database, hence, a large percentage of these names are rare but legitimate. Since we
are not interested to detect these rare attribute values, we adopt the P-measure metric.

Table 4 shows the number of outliers detected for each attribute. We focus on the
CA-outliers found in the GO dimension. The validities of these outliers are checked
by biologists through manual verification. True positive TP indicates an uncommon
association of the target attribute with the other attributes in the projected relation.
False positive FP indicates that no peculiarity is found in the correlation behavior of
the target attribute. Indeterminable means that further investigation is required.

The manual verification step largely depends on the knowledge level of the
biologist and his decisive-ness. Table 5 shows that a large percentage (24%-46%) of
the CA-outliers require further investigation because the biologist lacks the detail
knowledge to justify if the annotation is erroneous or it is only exceptional. 27%-58%
are false positives. 10%-24% of the gene ontology attribute outliers are confirmed
result of erroneous annotations.

The experiment shows that ODDS can be used as a pre-step for cleaning protein
annotations, subjected to further verification by an annotator. Obvious cases of
erroneous annotations are found in the ODDS results. For example, 12 bacteria
proteins (Q9Z5E4, Q6J5G7, among others) are associated with viral capsids which
are protein coats for viral particles. Also, 5 eukaryote proteins (Q9BG87, Q41J15,
among others) are oddly related to the reproduction of viruses.

7 Conclusion

Existing outlier detection methods focus primarily on class outliers; limited research
has been conducted on attribute outliers. This paper presents a novel method called
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ODDS that utilizes the correlations between attributes to identify attribute outliers.
Rather than focusing on rare attribute values or rare classes, ODDS systematically
searches for attribute points that exhibit alternative correlation behavior when
compared to other attribute points in a data subspace. These local deviators which we
refer to CA-outliers are dual-Experimental evaluation shows that ODDS can achieve
F-score of up to 88% in synthetic data set and is practically applicable for detecting
erroneous annotations in a protein database.

This paper focuses on the accuracy of the outlier detection approach. Two filtering
strategies are used to improve the time efficiency of the ODDS algorithm where the
enumeration of data subspaces is a major bottleneck. For future work, we strive to
reduce the time complexity further. One strategy is to separate the data space into
partitions of correlated subspaces in order to reduce the number of projections which
are permutated.
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Abstract. An important problem in database and data mining systems
is the detection of outlying points. It is often the case that data observa-
tions exhibiting atypical properties are of more interest than those fitting
common patterns. While anomaly and outlier detection have received
considerable attention from the statistics community, these approaches
are primarily focused on analysis of data sets containing relatively few
and univariate observations. Recently, valuable approaches have been
proposed to facilitate multidimensional analysis for larger data sets. Un-
fortunately, these approaches are often expensive and require numerous
comparisons between each point and the remainder of the data.

We propose an approach using histograms for outlier detection. Sparse
regions of the data are recognised and used for identifying points that are
likely to be outliers. An extensive experimental evaluation demonstrates
the efficiency of our approach under a number of circumstances with
varying parameters on real world and synthetic data sets.

1 Introduction

With the increase in the size of databases, efficient techniques are required for
analysis and interpretation of the stored data. An important data mining prob-
lem is outlier detection, where observations that deviate from the norm are
identified. Tasks where outliers are valuable include credit card fraud analy-
sis, determining adverse reactions to cancer treatments, or determining particu-
larly profitable (or unprofitable) customers. Outlier detection involves examining
points and discriminating based on some measure of “outlierness”.

Existing outlier detection algorithms for local outliers suffer due to the very
large is the number of point-point comparisons required. Without optimisation,
distance based algorithms need to test each point against all other points result-
ing in a time complexity of O(n?). Similarly, for local outlier algorithms running
time is O(n?) as the k nearest neighbours for each point are used. The high cost
of these algorithms makes analysis of large data sets difficult.

Recently, approaches have been proposed to improve the efficiency of
distance based outlier calculations. These often involve randomisation and re-
moving points from consideration once conditions can no longer be met. Un-
fortunately, these are not easily applied for detection of local outliers as the k
nearest neighbours of each point would still be required.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 176 2007.
© Springer-Verlag Berlin Heidelberg 2007
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We propose a novel approach in which histograms are used to find adjacent
regions of consistent densities. By discarding points within these regions from
consideration, we are able to significantly reduce the number of nearest neighbour
calculations for local outliers. Two stages are used to first identify histogram
buckets that are of interest and then identify points of interest. Following this,
an optional reconsideration phase allows the removal of false positives.

2 Background

Hawkins [9] defines an outlier as “an observation that deviates so much from
other observations as to arouse suspicion that it was generated by a different
mechanism”. We emphasise that the problem of outlier detection is different
to that of detecting aberrant data. Univariate outlier anaylsis is a well studied
problem in statistics [2] with two main types of outliers. Firstly, parametric or
distribution based outliers, which are detected by examining how observations
lie in relation to a known distribution function using a discordancy test. Often,
it is difficult to ascertain the data distribution or an appropriate discordancy
test may not exist. Depth-based outliers involve classifying points based on their
‘depth’ in relation to other observations. Points with smaller depths are more
likely to be outliers over deeper points. Depth is calculated in a similar way to
the construction of convex hulls and algorithms take O(n%/?) time where d is
the number of dimensions.

The first KDD approach for outlier detection was proposed by Knorr & Ng, us-
ing the distance between each point and each other point in the database
[TOUTTIT2IT3]. Tt was motivated by the difficulties in the application of discordancy
tests and the cost of depth based techniques. Points are classified as distance based
outliers if they are at least distance d from p% of the database. Knorr & Ng’s algo-
rithm compares the distance from each point to the remainder of the population
for this computation — this takes O(n?) time. Ramaswamy et al also used distance
[16], ranking objects on the distance to their k nearest neighbours.

A randomised approach for computing distance based outliers was put for-
ward by Bay & Schwabacher [4]. Experimental results show that this provides
a significant speed increase. Kollios et al [I4] use a density estimation stage
for improving clustering algorithms, which is also applicable for distance based
outliers and was shown to be accurate for two and three dimensions.

Distance based outliers provide no mechanism to vary the granularity of the
distance measure over the database. For instance, with two normal distributions,
a point may be 10 units and 1 standard deviation from the mean of the first
distribution, while a second point may lie 2 units and 4 standard deviations from
the other mean. It is now difficult to choose a cutoff that will result in the second
point, but not the first, being classified as an outlier.

Density based outliers are classified depending on how the points are placed
in local regions of the data. With OPTICS [5] and later LOF [6], Breunig et
al determine the ‘outlierness’ of points by examination of a point’s k nearest
neighbours (kKNN). Points in neighbourhoods that are similar to nearby regions
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are marked as regular, and those with neighbourhoods of varying density are
classified as outliers. This allows regions of varying density to be processed indi-
vidually, avoiding problems arising from data containing both numerous sparse
and dense regions. Other local approaches include Papadimitriou et al’s LOCI
[15] which also examines the neighbourhood around each point.

We focus on local outliers, in particular those found by the LOF algorithm
[6], due to the ability to detect types of outliers that are ungracefully handled
by other approaches. Despite finding high quality outliers, the time required for
the nearest neighbour queries may be expensive. As such, we are motivated to
propose a more efficient approach for local outliers.

3 Approach

In this section, we present our approach for local outlier detection using his-
tograms. We first identify data regions that can be discounted from containing
outlying points. Following this, we discern points that seem to have a high degree
of outlierness and consider these as candidate outliers. If we wish to completely
eliminate false positives, these candidates are reconsidered in the context of the
entire data set. Histograms (in particular, MinSkew) are chosen for their good
accuracy for selecltivity estimation. Furthermore, construction time is minimal
[1], allowing a significant increase in performance over existing techniques.

3.1 Problem Description and Notation

We begin by defining a set of instances D = {p1, pa, . .., pn }, where each instance
p; is a point with d attributes, p; = (pi1, pi2, - - -, Pia). When no ambiguity ariseis,
we will use p to refer to a arbitrary point. For the remainder of this paper, we
use the Euclidean distance metric with d(p;,p;).

The aim is to determine the set of outlying points that satisfy a condition
C relating outlying points to the remainder of the data set. More formally, we
wish to find {p’ € D | C(p')} where p’ denotes a point that is an outlier. For
instance, C' may be true for points lying more than a certain distance from 90%
of the entire data set. For the local outliers, C'(p) will be satisfied if a point is in
a sufficiently sparse region bordering on a dense region.

For local outliers, we adjust the definitions of Breunig et al [6] for readability.

Definition 1. k — distance(p) of a point p is the minimal distance d such that
at least k points are within distance d from p.

Definition 2. Reachability of point p with respect to point o is defined as
reachability(o,p) = max{k — distance(0),d(o,p)}

Definition 3. Local Reachability Density of p is:

Ird(p) = S v Te’fwhability(o)pw where kNN(p) refers to the k nearest

neighbours of p.
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ird(o)

Definition 4. Local Outlier Factor of a point p is: LOF (p) = 2 0ckNN(p) Ird(p) -

The local outlier factor is the average ratio between the local reachability density
between each of p’s nearest neighbours and the local reachability density p. A
point in a sparse region with neighbours in comparatively dense regions will
subsequently have lower reachability densities than its neighbours. This results
in a high outlierness for p; if this is below a predetermined threshold, p will be
marked as an outlier.

3.2 Histogram Based Outliers

Typically, histogram techniques iteratively divide existing buckets into smaller
buckets to minimise a badness function [I[7J§]. Unless otherwise mentioned, we
will use the MinSkew algorithm from Acharya et al [I]. This uses the sum of
variance for each bucket as a badness function. That is, >} | B;|s; where |B;] is
the number of points in bucket B;, n is the total number of buckets and s; is
the statistical variance.

Proposition 1. If point p falls within bucket B with density B.gens and p is
more than 2r from any edge of B, p is not an outlier where d is the dimension-
ality of the data set (r is the radius of the hypersphere enclosing p’s k nearest
neighbours).

If the histogram estimator is accurate, the area, a, of the circle enclosing all of
p’s k nearest neighbours is k/B.4ens. The distance to the furthest of these will
be § = {’/ a/m. Denoting this neighbour as pj, the reachability distance for p is
at most d(p, p;) + d(p}, p;) where p’; is the furthest of p}’s neighbours. If both p;
and pj; are contained within B, the maximum distance that p’; can be from p; is
0. As such, p is not a density based outlier if d(p,ep,) > ¢, where ep, € {edges
of B;}. This is illustrated in Figure 1a and Figure 1b.

Intuitively, we can consider that for selectivity estimation, we are attempting
to create regions of uniform density. Points lying towards the centre of these
regions are unlikely to be outliers. With Proposition 1, a large number of points
can be removed from consideration as outliers. For data sets with large regions
of relatively uniformly located data, this is particularly valuable (for instance
the Forest Cover data set [3]).

(17 et ,." Y
2x @ '

Fig. 1.
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3.3 Histogram Refinement

Due to the MinSkew algorithm minimising variance during construction, uniform
regions of the data may be divided. By attempting to minimise " | 0% , where
m is the number of buckets in a partitioning P,,, it may be possible for a split
to occur such that the accuracy of the partitioning is only trivially improved,
A(P) + €= A(Poys).

Consider a bivariate data set with a point at each value between 1 and 500, i.e.
(1,1), (1,2), ..., (500, 499), (500,500). For each attribute, we have 0? = 20833.25
and a split results in buckets with badness 0% + 03 = 10416.5. Despite this,
we observer only a marginal increase in accuracy due to the structure. While we
would not expect to observe this for the entire data set, it is easy to imagine local
regions exhibiting such patterns. Using bucket merges, we are able to increase
the number of points that can be discounted from being outliers.

Merging buckets is based on two factors. Firstly, the densities of the buckets so
as not to unnecessarily mark points in regions of consistent densities as outliers.
Secondly, we take into account the structure of the buckets; two adjacent buckets
may in fact have similar densities, this may be because they each contain a
cluster of points. During construction, the split was correct and it would be to
our disadvantage if we were to merge the resulting bucket.

It is possible to restrict some merges during the histogram construction phase.
Regions with uniformly placed points in this section is one such case. Other
scenarios are addressed by consideration once the partitioning is constructed.
The borders of adjacent buckets B, and B, are scanned, with regions of B,
consistent with B, may be reassigned from B, to B, (or vice-versa). In cases
where the buckets are very similar, the complete buckets will be merged.

In order to determine if two regions should be merged, we construct a sub-
histogram within the buckets from the original histogram. To avoid confusion,
we will use H to represent the initial histogram and use H’ for the sub-histogram.
Similarly, H’z, will be used for indicating the bucket of H' containing point p.

The merging process involves three phases for two adjacent buckets of H,
that is, Hp, and Hp, . Firstly, the construction of the equi-depth/equi-width sub-
histograms, H, for Hp, and H} for Hp,. The second stage involves consideration
of bordering cells H; € H; and Hp € H. If the ratio of these densities are
within an acceptable range 1 + e then the buckets are marked for merging.
Finally, merge marked buckets and calculate densities of the resulting buckets.
When merging buckets, the lowest of density values is chosen to represent the
overall density. While this may result in some underestimation of the density
of the combined bucket, the resulting sparse regions will lead to false positives
which can be reconsidered later.

For selectivity estimation, if the relative error being used for accuracy err =
t’f“, where t represets the true selectivity and est represents the value estimated
using the histogram, the difference between the error for the original and merged
buckets will be :N:Q‘”;“Xe where QQqreq is the area of the query for estimation.
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Algorithm 1. Finds outliers using the histogram based approach
FIND-OUTLIERS-HISTOGRAM (D):

1: H < CONSTRUCT-HISTOGRAM(D)
2: H' < MERGE-BUCKETS(H)
3: Candidates < (), Outliers « ()
4: for point p € D do
5: H, < FIND-BUCKET(p, H')
6: if IsCONTAINED(p, H'z,,) then
7: p is not an outlier
8: else
9: Dird < 0
10: orrd — 0
11: for each H;; reachable for p do
12: Update pirq based on H'p;
13: Update o5,.q based on H'pg;
14: if 7 > 7' then
15: Candidates U p
16: for p € Candidates do
17: if Is-OUTLIER(p, D) then
18: Outliers «— Outliers U {p}
19: return Outliers

3.4 Refining Candidates

We can also use the histogram structure to identify points that seem particularly
likely to be outliers or non outliers. Cells of the sub-histograms are used to
approximate the densities surrounding each point. This allows estimation of the
maximum and minimum LOF values for points and improve the identification
of candidate outliers. The bounds allow us to better discriminate with regards
to non outlying points in addition to helping us estimate LOF for outliers.

We first consider the density and size of both Hp, and H,. If a point is on
the edge of the bucket of size k > k, the local reachability density of p cannot
be greater than diag(Bp)~*, where diag(Bp) is the length of the diagonal of Bp.
In the most skewed scenario, the reachability distance for p must be less than
that of the diagonal of the bucket. When closer to the centre, this is likely to

be much smaller. For any point, the expected value for two dimensional data of

Ird(p) (only considering ngp) will be (\/kH/B”'iemity)*l. As the dimensionality

increases, the expression should be altered to consider the radius of the appro-
priate hypersphere. For points near the bucket edge, we also consider the density
of the relevant buckets adjacent to ngp. A pessimistic approach is taken, such
that the estimated Ird will be lower than the true value. While this may increase
the number of false positives, it mitigates the number of missed outliers. Of the
buckets under consideration, we use the lowest density value.
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The second stage is to estimate the range of possible LOF values for p. Ini-
tially, it is assumed that the positions of neighbouring points place p in a sparse
region of the data, allowing fr the lower LOF estimate. Following this, the highest
density regions nearby are examined and are used for the upper LOF' estimate.
It is important to note that this estimate is only performed for p. Any of the
other points that lie in the regions close to p are considered independently. The
estimates can then be used for determining the densities of the point and points
in nearby regions and then the range into which the LOF score will fall. Points
which are highly unlikely to be outliers are immediately discarded. A threshold
value, T, is used for choosing points that should be removed from consideration.
This value can be modified with ease, however it is rarely useful to keep points
that will have a LOF of 1.0 or less.

Algorithm [ shows the approach for histogram based outlier detection. 7/ is
the threshold above which we consider a point a candidate outlier. The method
Is — Outlier in line 18 returns true if the point is an outlier in the context of
the whole data set using the LOF algorithm.

3.5 Accuracy

Consider a bucket with a heavily skewed distribution such as depicted in
Figure 1c. The estimated density of points in the upper right region will be greater
than the true density while for points in the lower left region, the estimated den-
sity will be lower. This decreases the likelihood upper right points being classified
as outliers while increasing the likelihood for those in the lower left.

To assist us in considering the error induced by the approach, we define two
terms that relate to the estimate of density surrounding a given point:

Definition 5. Relative overestimate for point p is the ratio of the densities be-
tween the region surrounding p and the regions surrounding its neighbours esti-
mated by the histogram to be higher than the true ratio. That is,
estlrd(p)/estlrd(neighbour) > truelrd(p)/truelrd(neighbour).

As histogram construction takes place with constraints on the number of buck-
ets permitted, points in sparse regions may be placed in comparatively dense
buckets. The overestimate may be due to either that the histogram is accurate
for the density surrounding a point’s neighbours, but not for the point itself
(estlrd(neighbours) = truelrd(neighbours) and estlrd(p) > truelrd(p)), or the
density is correct for p, but is underestimated for p’s neighbours (estird(p) =
truelrd(p) and estlrd(neighbours) < truelrd(p)).

Definition 6. Relative underestimate is the ratio of the densities between the
region surrounding p and the regions surrounding its neighbours estimated by
the histogram to be lower than the true ratio. That is,
estlrd(p)/estlrd(neighbour) < lrd(p)/lrd(neighbour).

As with the overestimation, relative underestimation is a result of the constraints
on the maximum number of buckets. However, points in sparse regions are in
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buckets with a higher density than the density surrounding each point. There
are two cases to consider, firstly, estlrd(neighbours) = truelrd(neighbours) and
estlrd(p) < truelrd(p). Or secondly, where estird(p) = truelrd(p) and then
estlrd(neighbours) > truelrd(p).

Proposition 2. A relative underestimate for a non-outlying point p may lead
to p being misidentified as an outlier if lrd(p)_ZSth(p) > T —7.

Consider a point p with a local outlier factor of 7 and assume that v < 7
where 7 is the threshold above which points are considered outliers. Recall that
when densities are computed from the full data set, v = ézoekNN(p) ZZE’;;

Now, if there is a relative underestimate for the region surrounding p with
estlrd(p) < lrd(p) and estlrd(o) = lrd(o) then

. ]1€ Z Ird(o)

oChN N ) estlrd(p)

Now if r(® FZS””{(” ) > 7—~, then p will be erroneously be marked as an outlier.

The opposite of the previous case is:

Proposition 3. A relative underestimate for a outlying point p may lead to p
being incorrectly identified as a non-outlier. A point will be no longer be marked

as an outlier if EStle(pllflrd(p) >y —T.

4 Experimental Evaluation

Two sets of experiments are run; the first set involve synthetic data used to
examine how different distributions and parameters affect the approach. Two
synthetic sets are used: data drawn from the normal and exponential distribu-
tions and is iid. We also examine the Forest Cover [3] data set; this represents
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observations of forest information taken by the United States Forest Service. The
data contains information such as elevation, aspect and slope for forest ‘cells’.
Nominal data such as soil type were excluded.

Of course, if the distribution parameters are known, we would expect no
outliers simply extreme values. In our experiments, we make no assumptions
about the distribution from which the data has been drawn and LOF and local
densities for the discrimination of outlying points.

4.1 Results

For Figure 2] two constraints are used for the buckets, the first is 1,000 (10%
for the smallest size set moving towards 1% for the largest) and the second
2,000. For 1,000 buckets, slightly more than 2 seconds are required for the 10,000
point set and marginally less than 3 (2.91 seconds) for the 100,000 point set.
Approximately 7.6 seconds are needed for 20,000 points with 2,000 buckets,
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peaking at 8.3 seconds for 100,000 points with 2,000 buckets. Figuredb shows the
impact on time when the number of buckets is varied. When keeping the number
of buckets constant, there is only a slight increase in running time compared to
the increase in population size. Allowing the number of buckets to increase along
with the number of points, there is an increase in the time taken. This is a result
of the increased number of points close to the border of a cell.

Figure Bh shows the accuracy as we vary the number of buckets. The data
set sizes are 10,000, 20,000 and 40,000. There is a sharp increase as the number
of buckets approaches 500. The accuracy then plateaus at approximately 80%
accuracy with marginal increases in accuracy resulting from the increases in the
number of buckets. Additionally, when doubling the size of the data set, there
number of buckets needed to achieve the accuracy of the smaller set is small.
This suggests that as the histogram can model the shape of the data, the number
of buckets required decreases proportionally against the size of the dat set.

The results for varying data dimensionality are shown in Figure [Fh. As the
dimensionality increases that performance is slightly impacted. The accuracy
is still competitive for data of lower dimensionality. The sets used for these
experiments consist of 200,000 points and for the most part, outliers are found
in well under one minute. Even for the higher dimensional data, the performance
is still superior to that of LOF running on two dimensional data.

For exponentially distributed data our approach again outperforms LOF
(Figure 2b). Only a couple of seconds are required for 100,000 instances, which
is consistent with the normally distributed data results. The time for LOF is
very similar which is what we would expect; the number of nearest neighbour
queries required does not change with the structure of the data.

Because of the structure of the exponential data, we observe a slight decrease
in the accuracy of our approach in Figure[Bb. Again, there is a dramatic increase
in the quality as the number of buckets increases from 0 until approximately 400-
500. The lower accuracy is a result of the structure of the data. The exponential
data contains a diagonal ‘cutoff” between the regions where points lie and the
remaining empty space. As rectangular buckets are used, each bucket containing
points in this region typically contains a large empty portion. Both the perfor-
mance and accuracy are affected in a consistent manner for the exponentially
and normally distrubuted data sets.

A number of subsets were constructed from the UCI KDD Forest Cover data
set [3]. Only unique values were used (spikes in the data may result in the k
nearest neighbours of a point having the same value as the point). The first subset
contains the attribute “Horizontal Distance To Hydrology” (HDH) as well as
“Vertical Distance To Hydrology” (VDH) this consists of approximately 66,000
unique instances. The second contains “Slope”, “Aspect”, in addition to HDH
and VDH with approximately 545,000 unique instances. Due to the large size,
only our approach was run for these data sets.

Figure Bl shows the performance of our approach as the size of the data set is
increased. For the two dimensional data set, the number of buckets was set at
10% of the number of points present. For the four dimensional set, the number of
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Fig. 6. Outliers found by Histogram and LOF approaches

buckets was set at 2%. This also allows us to appreciate the additional increase
in set size and dimensionality. Figure [6] shows the structure of a cross section
of the data containing the attributes “Aspect” and “Slope”. The large regular
regions can easily be modelled with the histograms with only a small impact on
the quality of the outliers, leading to significant performance gain.

5 Conclusions

We have examined an approach for local outlier detection using histograms to
efficiently approximate densities rather than explicit computation using nearest
neighbours. The time taken for existing techniques is considerable; our approach
allows outliers to be found much faster with only a small decrease in accuracy.
A number of steps are used, the first of which involves refinement of the his-
togram buckets. This is followed by removal of points located in the centre of
large buckets. The third step is to examine each point and estimate the density
by examining the surrounding region in the histogram. If the maximum Local
Outlier Factor score that a point can have is below a specified threshold, we
immediately remove the point from consideration.
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Abstract. k-anonymization techniques have been the focus of intense
research in the last few years. An important requirement for such tech-
niques is to ensure anonymization of data while at the same time min-
imizing the information loss resulting from data modifications. In this
paper we propose an approach that uses the idea of clustering to min-
imize information loss and thus ensure good data quality. The key ob-
servation here is that data records that are naturally similar to each
other should be part of the same equivalence class. We thus formulate a
specific clustering problem, referred to as k-member clustering problem.
We prove that this problem is NP-hard and present a greedy heuristic,
the complexity of which is in O(n?). As part of our approach we de-
velop a suitable metric to estimate the information loss introduced by
generalizations, which works for both numeric and categorical data.

1 Introduction

A recent approach addressing data privacy relies on the notion of k-anonymity
[TTUT3]. In this approach, data privacy is guaranteed by ensuring that any record
in the released data is indistinguishable from at least (k — 1) other records with
respect to a set of attributes called the quasi-identifier. Although the idea of
k-anonymity is conceptually straightforward, the computational complexity of
finding an optimal solution for the k-anonymity problem has been shown to be
NP-hard, even when one considers only cell suppression [1I9]. The k-anonymity
problem has recently drawn considerable interest from research community, and
a number of algorithms have been proposed [BIAIGI7IRIT2]. Current solutions,
however, suffer from high information loss mainly due to reliance on pre-defined
generalization hierarchies [AI6J7I12] or total order [3I8] imposed on each attribute
domain. We discuss these algorithms more in detail in Section [2

The main goal of our work is to develop a new k-anonymization approach
that addresses such limitations. The key idea underlying our approach is that
the k-anonymization problem can be viewed as a clustering problem. Intuitively,
the k-anonymity requirement can be naturally transformed into a clustering
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problem where we want to find a set of clusters (i.e., equivalence classes), each
of which contains at least k records. In order to maximize data quality, we
also want the records in a cluster to be as similar to each other as possible. This
ensures that less distortion is required when the records in a cluster are modified
to have the same quasi-identifier value. We thus formulate a specific clustering
problem, which we call k-member clustering problem. We prove that this problem
is NP-hard and present a greedy algorithm which runs in time O(n?). Although
our approach does not rely on generalization hierarchies, if there exist some
natural relations among the values in a domain, our algorithm can incorporate
such information to find more desirable solutions. We note that while many
quality metrics have been proposed for the hierarchy-based generalization, a
metric that precisely measures the information loss introduced by the hierarchy-
free generalization has not yet been introduced. For this reason, we define a data
quality metric for the hierarchy-free generalization, which we call information
loss metric. We also show that with a small modification, our algorithm is able
to reduce classification errors effectively.

The remainder of this paper is organized as follows. We review the basic
concepts of the k-anonymity model and survey existing techniques in Section 21
We formally define the problem of k-anonymization as a clustering problem and
introduce our approach in Section Bl Then we evaluate our approach based on
the experimental results in Section @l We conclude our discussion in Section

2 Preliminaries

2.1 Basic Concepts

The k-anonymity model assumes that person-specific data are stored in a table
(or a relation) of columns (or attributes) and rows (or records). The process of
anonymizing such a table starts with removing all the explicit identifiers, such as
name and SSN, from the table. However, even though a table is free of explicit
identifiers, some of the remaining attributes in combination could be specific
enough to identify individuals if the values are already known to the public. For
example, as shown by Sweeney [I3], most individuals in the United States can
be uniquely identified by a set of attributes such as {ZIP, gender, date of birth}.
Thus, even if each attribute alone is not specific enough to identify individuals,
a group of certain attributes together may identify a particular individual. The
set of such attributes is called quasi-identifier.

The main objective of the k-anonymity model is thus to transform a table so
that no one can make high-probability associations between records in the table
and the corresponding entities. In order to achieve this goal, the k-anonymity
model requires that any record in a table be indistinguishable from at least
(k—1) other records with respect to the pre-determined quasi-identifier. A group
of records that are indistinguishable to each other is often referred to as an
equivalence class. By enforcing the k-anonymity requirement, it is guaranteed
that even though an adversary knows that a k-anonymous table contains the
record of a particular individual and also knows some of the quasi-identifier
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ZIP Gender Age Diagnosis ZIP  Gender Age Diagnosis
47918 Male 35  Cancer 4791 Person [35-39] Cancer
47906 Male 33  HIV+ 4790 Person [30-34] HIV+
47918 Male 36 Flu 4791x Person [35-39] Flu
47916 Female 39  Obesity 4791% Person [35-39] Obesity
47907 Male 33  Cancer 4790% Person [30-34] Cancer
47906 Female 33 Flu 4790% Person [30-34] Flu

Fig. 1. Patient Table Fig. 2. 3-anonymous Patient table

attribute values of the individual, he/she cannot determine which record in the
table corresponds to the individual with a probability greater than 1/k. For
example, a 3-anonymous version of the table in Fig. [[is shown in Fig,.

2.2 Existing Techniques

The k-anonymity requirement is typically enforced through generalization, where
real values are replaced with “less specific but semantically consistent values”
[13]. Given a domain, there are various ways to generalize the values in the
domain. Typically, numeric values are generalized into intervals (e.g., [12—19]),
and categorical values are generalized into a set of distinct values (e.g., {USA,
Canada}) or a single value that represents such a set (e.g., North-America).

Various generalization strategies have been proposed. In [7TTIT2], a non-
overlapping generalization-hierarchy is first defined for each attribute of quasi-
identifier. Then an algorithm tries to find an optimal (or good) solution which
is allowed by such generalization hierarchies. Note that in these schemes, if a
lower level domain needs to be generalized to a higher level domain, all the
values in the lower domain are generalized to the higher domain. This restric-
tion could be a significant drawback in that it may lead to relatively high
data distortion due to unnecessary generalization. The algorithms in [4l6], on
the other hand, allow values from different domain levels to be combined to
represent a generalization. Although this leads to much more flexible general-
ization, possible generalizations are still limited by the imposed generalization
hierarchies.

Recently, some schemes that do not rely on generalization hierarchies [38]
have been proposed. For instance, LeFevre et al. [§] transform the k-anonymity
problem into a partitioning problem. Specifically, their approach consists of the
following two steps. The first step is to find a partitioning of the d-dimensional
space, where d is the number of attributes in the quasi-identifier, such that
each partition contains at least k records. Then the records in each partition
are generalized so that they all share the same quasi-identifier value. Although
shown to be efficient, these approaches also have a disadvantage that it requires
a total order for each attribute domain. This makes it impractical in most cases
involving categorical data which have no meaningful order.
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3 Anonymization and Clustering

The key idea underlying our approach is that the k-anonymization problem can
be viewed as a clustering problem. Clustering is the problem of partitioning a set
of objects into groups such that objects in the same group are more similar to
each other than objects in other groups with respect to some defined similarity
criteria [5]. Intuitively, an optimal solution of the k-anonymization problem is
indeed a set of equivalence classes such that records in the same equivalence
class are very similar to each other, thus requiring a minimum generalization.

3.1 k-Anonymization as a Clustering Problem

Typical clustering problems require that a specific number of clusters be found
in solutions. However, the k-anonymity problem does not have a constraint on
the number of clusters; instead, it requires that each cluster contains at least
k records. Thus, we pose the k-anonymity problem as a clustering problem,
referred to as k-member clustering problem.

Definition 1. (k-member clustering problem) The k-member clustering
problem is to find a set of clusters from a given set of n records such that
each cluster contains at least k (k < n) data points and that the sum of all
intra-cluster distances is minimized. Formally, let S be a set of n records and
k the specified anonymization parameter. Then the optimal solution of the k-
clustering problem is a set of clusters & = {ey,..., e} such that:

1L.Vi#je{l,....m}, e, Ne; =0,

2. Ui:l,...,m e =35,

3. Ve € &, |e| >k, and

4. Z[:l,...,m lee| - MAX; j— 1, je,) APee,i), P(e,j)) 18 minimized.

Here |e| is the size of cluster e, p(, ;) represents the i-th data point in cluster ey,
and A(z,y) is the distance between two data points = and y. O

Note that in Definition [Il, we consider the sum of all intra-cluster distances,
where an intra-cluster distance of a cluster is defined as the maximum distance
between any two data points in the cluster (i.e., the diameter of the cluster).
As we describe in the following section, this sum captures the total information
loss, which is the amount of data distortion that generalizations introduce to the
entire table.

3.2 Distance and Cost Metrics

At the heart of every clustering problem are the distance functions that measure
the dissimilarities among data points and the cost function which the clustering
problem tries to minimize. The distance functions are usually determined by the
type of data (i.e., numeric or categorical) being clustered, while the cost function
is defined by the specific objective of the clustering problem. In this section, we
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describe our distance and cost functions which have been specifically tailored for
the k-anonymization problem.

As previously discussed, a distance function in a clustering problem measures
how dissimilar two data points are. As the data we consider in the k-anonymity
problem are person-specific records that typically consist of both numeric and
categorical attributes, we need a distance function that can handle both types
of data at the same time.

For a numeric attribute, the difference between two values (e.g., |z —y|) natu-
rally describes the dissimilarity (i.e., distance) of the values. This measure is also
suitable for the k-anonymization problem. To see this, recall that when records in
the same equivalence class are generalized, the generalized quasi-identifier must
subsume all the attribute values in the equivalence class. That is, the general-
ization of two values x and y in a numeric attribute is typically represented as
a range [z, y], provided that < y. Thus, the difference captures the amount of
distortion caused by the generalization process to the respective attribute (i.e.,
the length of the range).

Definition 2. (Distance between two numeric values) Let D be a finite
numeric domain. Then the normalized distance between two values v;,v; € D is
defined as:

on(v1, v2) = |v1 — 2| /D],
where |D| is the domain size measured by the difference between the maximum
and minimum values in D. ]

For categorical attributes, however, the difference is no longer applicable as most
of the categorical domains cannot be enumerated in any specific order. The
most straightforward solution is to assume that every value in such a domain is
equally different to each other; e.g., the distance of two values is 0 if they are
the same, and 1 if different. However, some domains may have some semantic
relationships among the values. In such domains, it is desirable to define the
distance functions based on the existing relationships. Such relationships can
be easily captured in a tazonomy tree L. We assume that a taxonomy tree of
a domain is a balanced tree of which the leaf nodes represent all the distinct
values in the domain. For example, Fig. Blillustrates a natural taxonomy tree for
the Country attribute. However, for some attributes such as Occupation, there
may not exist any semantic relationship which can help in classifying the domain
values. For such domains, all the values are classified under a common value as
in Fig. @ We now define the distance function for categorical values as follows:

Definition 3. (Distance between two categorical values) Let D be a cat-
egorical domain and 7p be a taxonomy tree defined for D. The normalized
distance between two values v;,v; € D is defined as:

bc(vr, v2) = H(A(vi, vy)) / H(Tp),

! Taxonomy tree can be considered similar to generalization hierarchy introduced
in [JIIIT2]. However, we treat taxonomy tree not as a restriction, but a user’s
preference.
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Country
Occupation
America Asia
North South West East
A A A A Armed-Forces Teacher Doctor Salesman Tech-Support

USA Canada Brazil Mexico Iran Egypt India Japan

Fig. 3. Taxonomy tree of Country Fig. 4. Taxonomy tree of Occupation

where A(z, y) is the subtree rooted at the lowest common ancestor of z and y,
and H(R) represents the height of tree 7. O

Example 1. Consider attribute Country and its taxonomy tree in Fig. Bl The
distance between India and USA is 3/3 = 1, while the distance between India
and Iran is 2/3 = 0.66. On the other hand, for attribute Occupation and its
taxonomy tree in Fig. [ which goes up only one level, the distance between any
two values is always 1.

Combining the distance functions for both numeric and categorical domains, we
define the distance between two records as follows:

Definition 4. (Distance between two records) Let Q7 = {Ny,..., N,
Cy,...,Cy} be the quasi-identifier of table T', where N;(i = 1,...,m) is an
attribute with a numeric domain and C;(j = 1,...,n) is an attribute with a
categorical domain. The distance of two records ry, o € T is defined as:

Alrire) = ) Sn(m[Nilr2 [N + D be(ri[Cyl,ma[Cy]),

1=1,....m Jj=1,....n

where 7;[A] represents the value of attribute A in r;, and 6 and 6¢ are the dis-
tance functions defined in Definitions[2 and [3], respectively. |

Now we discuss the cost function which the k-members clustering problem
tries to minimize. As the ultimate goal of our clustering problem is the k-
anonymization of data, we formulate the cost function to represent the amount
of distortion (i.e., information loss) caused by the generalization process. Recall
that, records in each cluster are generalized to share the same quasi-identifier
value that represents every original quasi-identifier value in the cluster. We as-
sume that the numeric values are generalized into a range [min, max| [8] and
categorical values into a set that unions all distinct values in the cluster [3]. With
these assumptions, we define a metric, referred to as Information Loss metric
(IL), that measures the amount of distortion introduced by the generalization
process to a cluster.

Definition 5. (Information loss) Let e = {rq,..., 7} be a cluster (i.e., equiv-
alence class) where the quasi-identifier consists of numeric attributes Ny, ..., Ny,
and categorical attributes C1, ..., C,. Let 7¢, be the taxonomy tree defined for
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the domain of categorical attribute C;. Let M I Ny, and M AXy, be the min and
max values in e with respect to attribute V;, and let Ug, be the union set of
values in e with respect to attribute C;. Then the amount of information loss
occurred by generalizing e, denoted by IL(e), is defined as:

L) =fe[-( 3 (MAXNi]\aMINNi) S H;(;Cf;)))

i=1,....m Jj=1,....n

where |e| is the number of records in e, | N| represents the size of numeric domain
N, A(Ug,) is the subtree rooted at the lowest common ancestor of every value
in Ug,, and H(T) is the height of taxonomy tree 7. O

Using the definition above, the total information loss of the anonymized table is
defined as follows:

Definition 6. (Total information loss) Let £ be the set of all equivalence
classes in the anonymized table A7. Then the amount of total information loss
of AT is defined as:

Total-TL(AT) = > __ o I L(e). O

eef
Recall that the cost function of the k-members problem is the sum of all intra-
cluster distances, where an intra-cluster distance of a cluster is defined as the
maximum distance between any two data points in the cluster. Now, if we con-
sider how records in each cluster are generalized, minimizing the total informa-
tion loss of the anonymized table intuitively minimizes the cost function for the
k-members clustering problem as well. Therefore, the cost function that we want
to minimize in the clustering process is Total-IL.

3.3 Anonymization Algorithm

Armed with the distance and cost functions, we are now ready to discuss the
k-member clustering algorithm. As in most clustering problems, an exhaustive
search for an optimal solution of the k-member clustering is potentially expo-
nential. In order to precisely characterize the computational complexity of the
problem, we define the k-member clustering problem as a decision problem as
follows.

Definition 7. (k-member clustering decision problem) Given n records,
is there a clustering scheme £ = {ey,...,e¢} such that

1. |le;] > k, 1 < k < n: the size of each cluster is greater than or equal to a
positive integer k, and

2. > .1 ,IL(e;) < ¢, ¢> 0:the Total-IL of the clustering scheme is less than
a pos{ti{/e constant c. (I

Theorem 1. The k-member clustering decision problem is NP-complete.
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Proof. That the k-member clustering decision problem is in NP follows from the
observation that if such a clustering scheme is given, verifying that it satisfies
the two conditions in Definition [l can be done in polynomial time.

In [I], Aggarwal et al. proved that optimal k-anonymity by suppression is
NP-hard, using a reduction from the EDGE PARTITION INTO TRIANGLES prob-
lem. In the reduction, the table to be k-anonymized consists of n records; each
record has m attributes, and each attribute takes a value from {0,1,2}. The
k-anonymization technique used is to suppress some cells in the table. Aggarwal
et al. showed that determining whether there exists a 3-anonymization of a table
by suppressing certain number of cells is NP-hard.

We observe that the problem in [I] is a special case of the k-member clustering
problem where each attribute is categorical and has a flat taxonomy tree. It
thus follows that the k-member clustering problem is also NP-hard. When each
attribute has a flat taxonomy tree, the only way to generalize a cell is to the root
of the flat taxonomy tree, and this is equivalent to suppressing the cell. Given
such a database, the information loss of each record in any generalization is the
same as the number of cells in the record that differ from any other record in the
equivalent class, which equals the number of cells to be suppressed. Therefore,
there exists a k-anonymization with total information loss no more than ¢ if and
and only if there exists a k-anonymization that suppresses at most ¢ cells. O

Faced with the hardness of the problem, we propose a simple and efficient al-
gorithm that finds a solution in a greedy manner. The idea is as follows. Given
a set of n records, we first randomly pick a record r; and make it as a cluster
e1. Then we choose a record r; that makes IL(e; U {r;}) minimal. We repeat
this until |e;]| = k. When |e;| reaches k, we choose a record that is furthest from
r; and repeat the clustering process until there are less than k records left. We
then iterate over these leftover records and insert each record into a cluster with
respect to which the increment of the information loss is minimal. We provide
the core of our greedy k-member clustering algorithm, leaving out some trivial
functions, in Figure

Theorem 2. Let n be the total number of input records and k be the specified
anonymity parameter. Every cluster that the greedy k-member clustering algo-
rithm finds has at least k records, but no more than 2k — 1 records.

Proof. Let S be the set of input records. As the algorithm finds a cluster with
exactly k records as long as the number of remaining records is equal to or
greater than k, every cluster contains at least k records. If there remain less
than k records, these leftover records are distributed to the clusters that are
already found. That is, in the worst case, k — 1 remaining records are added to
a single cluster which already contains k records. Therefore, the maximum size
of a cluster is 2k — 1. |

Theorem 3. Let n be the total number of input records and k be the specified
anonymity parameter. The time complexity of the greedy k-member clustering
algorithm is in O(n?).
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Function greedy_k_member_clustering (S, K) Function find_best_record (S, c)
Input: a set of records S and a threshold value k. Input: a set of records S and a cluster c.
Output: a set of clusters each of which contains at least k | Output: a record r € S such that IL(c {r}) is minimal.
records. 1. n=ISl; min = oo; best = null;

1. if(I1SI1<k) 2. for(i=1,...n)

2 return S; 3 r=i-threcord in S;

3. endif; 4 diff = IL(c U {r}) - IL(c);

4. result= &; r = arandomly picked record from S; 5 if( diff < min )

5. while(1S1>k) 6. min = diff;

6. r = the furthest record from r; 7 best =r;

7 S=S-{r}; 8 end if}

8 c={r}; 9. end for;

9. while(lcl<k) 10. return best;

10. 1 = find_best_record(S, c); End;

11. S=S-{r};

12. c=cu{r}; Function find_best_cluster (C, r)

13.  end while; Input: a set of clusters C and a record r.

14, result =result U {c}; Output: a cluster ¢ € C such that IL(c v{r}) is minimal.

15. end while; 1. n=ICl; min = oo; best =null;

16. while(1S1 #0) 2. for(i=1,...n)

17.  r=arandomly picked record from S; 3 ¢ = i-th cluster in C;

18. S=S-{r}; 4 diff = IL(c U {r}) — IL(c);

19. ¢ =find_best_cluster(result, r); 5 if( diff < min )

20. c=cuU{r); 6. min = diff;

21. end while; 7 best = c;

22. return result; 8 end if;
End; 9. end for;

10. return best;

End;

Fig. 5. Greedy k-member clustering algorithm

Proof. Observe that the algorithm spends most of its time selecting records from
the input set S one at a time until it reaches |S| = k (Line 9). As the size of
the input set decreases by one at every iteration, the total execution time T is
estimated as:

nin—1)
2
Therefore, T is in O(n?). O

T=n-1)4+n-2)+...+k~=

3.4 Improvement for Classification

In most k-anonymity work, the focus is heavily placed on the quasi-identifier, and
therefore other attributes are often ignored. However, these attributes deserve
more careful consideration. In fact, we want to minimize the distortion of quasi-
identifier not only because the quasi-identifier itself is meaningful information,
but also because a more accurate quasi-identifier will lead to good predictive
models on the transformed table [6]. In fact, the correlation between the quasi-
identifier and other attributes can be significantly weakened or perturbed due
to the ambiguity introduced by the generalization of the quasi-identifier. Thus,
it is critical that the generalization process does preserve the discrimination of
classes using quasi-identifier. Considering this issue, Iyengar also proposed the
classification metric (CM) as:

CM =5 Penalty(row r) / N,

all rows
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where N is the total number of records, and Penalty(row r) = 1 if r is suppressed
or the class label of r is different from the class label of the majority in the
equivalence group.

Inspired by this metric, we modify our algorithm in Figure [l by replacing Line
4 of Function find best record with the following.

if (majority-class-label(c) == class-label(r))
diff = IL({c U {r}) — IL(c);
else diff = IL({c U{r}) — IL(c) + classPenalty;

In essence, the algorithm is now forced to choose records with the same class
label for a cluster, and the magnitude of enforcement is controlled by the weight
of penalty. With this minor modification, our algorithm can effectively reduce
the cost of classification metric without increasing much information loss. We
show the results in Section [l

4 Experimental Results

The main goal of the experiments was to investigate the performance of our ap-
proach in terms of data quality, efficiency, and scalability. To accurately evaluate
our approach, we also compared our implementation with another algorithm,
namely the median partitioning algorithm proposed in [§].

4.1 Experimental Setup

The experiments were performed on a 2.66 GHz Intel IV processor machine with
1 GB of RAM. The operating system on the machine was Microsoft Windows
XP Professional Edition, and the implementation was built and run in Java 2
Platform, Standard Edition 5.0.

For our experiments, we used the Adult dataset from the UC Irvine Ma-
chine Learning Repository [I0], which is considered a de facto benchmark for
evaluating the performance of k-anonymity algorithms. Before the experiments,
the Adult data set was prepared as described in [3J6lS]. We removed records
with missing values and retained only nine of the original attributes. For k-
anonymization, we considered {age, work class, education, marital status, occupa-
tion, race, gender, and native country} as the quasi-identifier. Among these, age
and education were treated as numeric attributes while the other six attributes
were treated as categorical attributes. In addition to that, we also retained the
salary class attribute to evaluate the classification metric.

4.2 Data Quality and Efficiency

In this section, we report experimental results on the greedy k-members algo-
rithm for data quality and execution efficiency.

Fig. @ reports the Total-IL costs of the three algorithms (median partitioning,
greedy k-member, and greedy k-member modified to reduce classification error)
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Clustering vs. Partitioning (n = 30,162) Clustering vs. Partitioning (n = 30,162)
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Fig. 6. Information Loss Metric Fig. 7. Discernibility Metric

for increasing values of k. As the figure illustrates, the greedy k-members algo-
rithm results in the least cost of the Total-IL for all £ values. Note also that the
Total-IL cost of the modified greedy k-member is very close to the cost of the
unmodified algorithm. The superiority of our algorithms over the median parti-
tioning algorithm results from the fact that the median partitioning algorithm
considers the proximity among the data points only with respect to a single
dimension at each partitioning.

Another metric used to measure the data quality is the Discernibility metric
(DM) [3], which measures the data quality based on the size of each equivalence
class. Intuitively data quality diminishes as more records become indistinguish-
able with respect to each other, and DM effectively captures this effect of the
k-anonymization process. Fig. [l shows the DM costs of the three algorithms for
increasing k values. As shown, the two greedy k-member algorithms perform
better than the median partitioning algorithm. In fact, the greedy k-member al-
gorithms always produce equivalence classes with sizes very close to the specified
k, due to the way clusters are formed.

Fig. fshows the experimental result with respect to the CM metric described
in Section Bl As expected, the greedy k-member algorithm modified to mini-
mize classification errors (as described in Section [)) outperforms all the other
algorithms. Observe that even without the modification, the greedy k-members
algorithm still produces less classification errors than the median partitioning
for every k value. We also measured the execution time of the algorithms for
different k values. The results are shown in Fig. [0l Even though the execution
time for the greedy k-member algorithm is higher than the partitioning algo-
rithm, we believe that it is still acceptable in practice as k-anonymization is
often considered an off-line procedure.

4.3 Scalability

Fig. M0 and [T show the Total-IL costs and execution-time behaviors of the al-
gorithms for various table cardinalities (for k = 5). For this experiment, we used
the subsets of the Adult dataset with different sizes. As shown, the Total-IL
costs increase almost linearly with the size of the dataset for both algorithms.
However, the greedy k-member algorithm introduces the least Total-IL cost for
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any size of dataset. Although the greedy k-members is slower than the par-
titioning algorithm, we believe that the overhead is still acceptable in most
cases considering its better performance with respect to the Total-IL metric.

5 Conclusions

In this paper, we proposed an efficient k-anonymization algorithm by transform-
ing the k-anonymity problem to the k-member clustering problem. We also pro-
posed two important elements of clustering, that is, distance and cost functions,
which are specifically tailored for the k-anonymization problem. We emphasize
that our cost metric, IL metric, naturally captures the data distortion introduced
by the generalization process and is general enough to be used as a data quality

metric for any k-anonymized dataset.
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Abstract. As a total amount of traffic data in networks has been grow-
ing at an alarming rate, many researches to mine traffic data with the
purpose of getting useful information are currently being performed.
However, since network traffic data contain the information about In-
ternet usage patterns of users, network users’ privacy can be compro-
mised during the mining process. In this paper, we propose an efficient
and practical method for privacy preserving sequential pattern mining
on network traffic data. In order to discover frequent sequential pat-
terns without violating privacy, our method uses the N-repository server
model that operates as a single mining server and the retention replace-
ment technique that changes the answer to a query probabilistically. In
addition, our method accelerates the overall mining process by maintain-
ing the meta tables in each site. Extensive experiments with real-world
network traffic data revealed the correctness and the efficiency of the
proposed method.

Keywords: Data mining, Sequential pattern, Network traffic, Privacy.

1 Introduction

Owing to the rapid advance of network technology, the number of computers con-
nected to the Internet increases dramatically, so does the information delivered
over the vast Internet. Recently, there has appeared a new kind of data mining
researches that extract useful knowledge from network traffic data automatically
gathered by a remote server [QI7UTT].

Table [l shows an example of network traffic data gathered by Ethereall. The
network traffic data have the following characteristics: First, there exist various
kinds of data since all the computers connected to the Internet can produce
network traffic data potentially. Second, a huge amount of network traffic data
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Table 1. An example of network traffic data gathered by Ethereal

timestamp source address source port destination address destination port
13:37:11.950966 180.1.1.1 36872 amazon.com WWW
13:37:11.954474  amazon.com WWW 180.1.1.1 36872
13:37:22.384472 180.1.1.1 36915 192.168.1.3 telnet
13:37:22.385327  192.168.1.3 telnet 180.1.1.1 36915

are accumulated due to frequent actions for data sending/receiving by a lot of
computers. Third, network traffic data are scattered over a large number of sites.

Sequential pattern mining is the most useful for this application since the
order of events has an important meaning in network traffic data [9I7].

Network traffic data contain detailed information of Internet usage for every
user, which informs that a user accesses a site at a time specifically. Herein,
data mining on network traffic data has the problem of compromising privacy
of network users. Therefore, it requires sophisticated techniques for hiding or
reforming users’ private information during a data gathering process. Moreover,
these techniques should not sacrifice the correctness of mining results.

Privacy preserving data mining is a new kind of a research area that aims at
mining data with guaranteeing privacy of individual users [AT3/25ISIGTOT2IT4].
Recently, there have been many research efforts performed in this area. Most
methods proposed in prior studies, however, manage data in a few sites or deal
with a small number of distinct types of data. Thus, these methods are not
appropriate for mining network traffic data since they suffer from the problems
of incorrectness and low performance.

In this paper, we discuss solutions to the problems that occur in previous
methods. We propose a novel method for sequential pattern mining on network
traffic data. The proposed method preserves privacy of sites and guarantees the
correctness of mining results. The method discovers frequently-occurring network
traffic patterns with hiding site information through two ways: (1) It employs
the N-repository server model that makes multiple servers behave as a single
mining server