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SERIES EDITOR’S INTRODUCTION

Vladimir Zwass, Editor-in-Chief

The field of Information Systems (IS) shares a disciplinary interest in systems analysis and design 
(SA&D) with computer science (CS) and, in particular, with its subfield of software engineering. 
The IS discipline focuses on behavioral, cognitive, organizational, economical, and social issues 
along with the business-facing technological issues of systems development.

The present volume of Advances in Management Information Systems (AMIS) addresses this 
broad set of concerns. Edited and written by some of the leading authorities, the volume’s aim—
consistent with objectives of the AMIS series—is to bring together research work that forms our 
thinking about the processes and products of SA&D. For this reason, the volume is organized 
around the influential tiered framework that systematizes IS development methodologies (Iivari, 
Hirschheim, and Klein, 2000–2001). Thus organized, the work of the volume’s editors and the 
researchers who contributed to it makes visible a coherent view of the approaches underlying 
SA&D (such as structured development, object orientation, or sociotechnical design), specific 
methodologies relying on these approaches, and techniques deployed to develop systems using 
these methodologies. The distinct architectural principles for designing complex artifacts that are 
IS are discussed and exemplified in the context of satisfying the varied requirements of system 
stakeholders.

Demonstrably, we are able to develop and implement ever larger, more complex, and more 
pervasive systems. Equally demonstrably, our systems development processes are subject to severe 
time and budget overruns as well as implementation failures, and the resulting systems suffer 
from a wide array of vulnerabilities and maintainability deficiencies. These facts alone call for 
the deeper study of fundamentals of our SA&D approaches, methodologies, and techniques. Well 
beyond these factors, the drastically changing environment of software development calls for a 
fundamental review and reassessment of our methodologies for this development. The examination 
of foundations that is undertaken in the present AMIS volume is thus very important.

The changes are profound and striking, since I last had an opportunity to write my assessment 
of the entire SA&D arena some twenty-five years ago (Zwass, 1984). Some of the current principal 
overlapping aspects of the ongoing change include:

1. Contemporary information systems are widely distributed. This distribution occurs in 
many senses of the word: geographical, organizational, across heterogeneous systems software 
and hardware, across diverse enterprise systems, and across heterogeneous databases and data 
warehouses.

2. The overall functionality of major IS is actually delivered by systems of systems. These 
supersystems have an emergent quality: they have not been (and cannot be, in most cases) planned 
and developed as an entity. The obvious example is the Internet–Web compound; other examples 
include supply chain management systems that emerge to support the changing constellations of 
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business partners, and the sense-and-control systems that will support the work of corporations 
and other organizations with ubiquitous sensors and actuators, feeding voluminous data into the 
event-driven IS. Such systems “are ‘unbounded’ because they involve an unknown number of 
participants or otherwise require individual participants to act and interact in the absence of needed 
information” (Fisher and Smith, 2004, p. 1). The emergent systems of systems act in a manner 
unforeseen at the time the individual systems were being designed, acquiring vulnerabilities that 
emerge during execution and system interaction.

3. Reuse of software components of various degrees of complexity and functionality has 
become an objective of development. This complicates the design of individual components, as 
developers need to determine the level of component granularity and achieve the necessary degree 
of generality, documentation, and imperviousness to misuse (De Cesare, Lycett, and Macredie, 
2006). It also calls for the supporting systems of discovery, integration, secure deployment, and 
intellectual property management. Components and subsystems are provided by diverse suppliers 
under different organizational arrangements, including open source under various licenses. With 
the availability of software components, such as commercial-off-the-shelf (COTS) products or 
Web services, development becomes integration-oriented. Stability of the integration environment 
underwrites the stability of the systems developed with its use. The stability of the environments, 
or its absence, is an outcome of the general competitive jockeying for the standardization rents 
conducted by technology companies.

4. Execution paths in some systems are nondeterministic, owing to the runtime binding of 
services discovered via directories. The fact that different code entities may be invoked to handle 
the same transactions at different times magnifies other vulnerabilities and lowers system reli-
ability considerably.

5. A highly dynamic competitive environment on a global scale results in mergers and acquisi-
tions, as well as spin-offs and other divestments, and thus necessitates continuing and thorough
going evolution of organizational systems.

6. A variety of modes of system provisioning and governance, including outsourcing, offshor-
ing, software as a service, grid computing, singly and in various combinations, presents a variety 
of alternatives in the continuing supply of organizational information services. When governance 
changes are enacted, extensive software (r)evolution in organizational IS results.

7. The open source mode of software production and maintenance, with support provided by 
software vendors, offers an enticing alternative to the traditional licensing of software products. 
Beyond that, when internalized by firms it offers a new working paradigm for organizational IS. 
For instance, the Progressive Open Source program aims to gradually introduce open-source 
methods into large corporations by going from the intraorganizational deployment of open source 
gradually to include outside developers (Dinkelacker et al., 2002). Intellectual property issues 
come to the fore in various forms, including the variety of copyleft licenses under which various 
parts of the emerging composite systems have been produced. The Open Source Initiative lists 
seventy-two different licenses compliant with its review criteria (Open Source Initiative, 2006). 
Security exposures due to the use of third (and further) -party code require coherent handling.

A number of fundamental advances in SA&D have been directed at managing the growing 
complexity of information systems and their development processes. These advances include: 
the growing understanding of modular system design with information encapsulation and hiding; 
layered system development with strictly limited interfaces; progression of modeling tools with 
a gradual movement from the business-process level of abstraction to the solution level of detail; 
semantically powerful programming languages with typing facility and, in some cases, platform 
neutrality; supportive software development environments and the means of system composition, 
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such as service-oriented architecture (SOA). All of these enhance our ability to dynamically align 
an organization’s IS with its capabilities and business processes.

Research in the SA&D domain continues apace. New modeling approaches are being devel-
oped with service orientation to support the highly dynamic business environment, sometimes 
dubbed “on-demand business,” with the modular definition of business components supported by 
IS components (Cherbakov et al., 2005). The elicitation of requirements, a key part of systems 
analysis, is being studied in a generalized way, to tighten the mapping between what the users want 
and what the system delivers (Hickey and Davis, 2004). The effectiveness of various prototyping 
strategies is being investigated empirically (Hardgrave, Wilson, and Eastman, 1999). Cost–benefit 
analysis of the use of unified modeling language (UML) documentation during the maintenance of 
object-oriented software is being performed through controlled experiments with actual develop-
ers (Dzidek, Arisholm, and Briand, 2008). As evidenced by the contents of the present volume, 
agent-oriented architectures are of the particular moment with the advent of ubiquitous comput-
ing; design with autonomous agents leads to new approaches being grafted onto object-oriented 
development (Garcia and Lucena, 2008). Work continues on developing quantitative methods of 
predicting the characteristics of the system development process at its inception (Curtis et al., 
2008). The means of alignment between corporate software development processes and strategic 
initiatives are being studied (Slaughter et al., 2006). The empirics of the cognitive transition of 
developers to new development methodologies surface the tactics for success (Armstrong and 
Hardgrave, 2007).

Within the IS research area, the development of software artifacts is being studied in a disciplined 
manner, using the precepts of design science. The aims of this research stream were articulated 
about two decades ago (Nunamaker, Chen, and Purdin, 1990–91). Viewing IS as a discipline of 
applied research, design science aims to empirically surface the principles undergirding the pro-
cesses of development and implementation of successful organizational IS (Hevner et al., 2004; 
Peffers et al., 2007–2008). The work on design science is part of a more general interdisciplinary 
project of “designing the design” (Baldwin and Clark, 2006).

The ability to actively create systems is, without a doubt, a vital subject of IS research, practice, 
and teaching. The volume editors, authors, and I fully expect that the appearance of this AMIS 
volume, addressing the foundations of these efforts, will stimulate further work that will lead to 
more creative, resilient, and organizationally fit IS.
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Chapter 1

THE STATE OF SYSTEMS ANALYSIS  
AND DESIGN RESEARCH

John Erickson and Keng Siau

INTRODUCTION

Successful implementation of information systems depends heavily on a thorough and well-
executed systems analysis and design (SA&D) effort. While organizations have been building 
information systems for nearly fifty years, information systems failure is still a common occur-
rence (Avison and Fitzgerald, 2006; Hardgrave, Davis, and Riemenschneider, 2003; Schmidt 
et al., 2001; Siau, Wand, and Benbasat, 1997; Smith, Keil, and Depledge, 2001). The field of 
systems analysis and design remains very much an art rather than a precise science. Traditionally, 
the area of systems development has suffered from abysmally low success rates, typically cited 
in the range of 25–35 percent. Even though David Rubinstein (2007) cited an overall doubling 
in success rates between 1994 and 2006, the success rates claimed in Rubinstein’s summary of 
a Standish Report still stand at about 35 percent. While the apparent improvement is welcome 
news, 65 percent of systems efforts are still considered failures. The stubbornly high failure rates 
in systems development projects highlight the continuous need for quality research in nearly every 
area of systems development.

Over the past twenty years or so, a number of different ideas regarding systems development 
have revolutionized the field. One such revolution involves the movement from structured systems 
development to the object-oriented perspective (Armstrong and Hardgrave, 2007) triggered by a 
more or less wholesale move toward object-oriented programming in the 1980s. Another trend is 
forward engineering, where models developed can be automatically translated into programming 
codes. While the goal of complete executable modeling remains tantalizingly out of reach, some 
progress toward that end has made it possible in some cases to make more than 40 percent of code 
executable. More recent trends in systems development promote the idea of arranging existing 
program code modules rather than writing the code itself, such as Web services or service-oriented 
architectures (SOA) (Erickson and Siau, 2008); they also highlight a desire to move beyond the 
programming function itself. In addition, new ideas and emphases such as agility (Erickson, 
Lyytinen, and Siau, 2005), extreme programming, agent-oriented approach, and cognition (Siau 
and Tan, 2005a, 2005b; Wei, Chiang, and Wu, 2006) in the context of systems analysis and design 
have assumed increasing importance to academicians and practitioners. Continuing research into 
these areas, especially concentrating on the analysis and design efforts of the larger systems de-
velopment process, remains a high priority, with a goal of reducing systems development failure. 
This volume consists of chapters that address these concerns.
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VARIOUS CLASSIFICATION SCHEMES FOR SYSTEMS ANALYSIS AND 
DESIGN RESEARCH

One issue the editors of this volume needed to resolve was the classification of the chapters. Several 
perspectives or dimensions were considered, and these are briefly reviewed below.

Iivari, Hirschheim, and Klein (2001) used a framework consisting of paradigms, approaches, 
methodologies, and techniques. In the social sciences, the term “paradigm” is usually used to 
describe the basic assumptions underlying coexistent theories (Burrell and Morgan, 1979). An 
approach can be viewed as the basic principles, goals, and concepts that anchor the way systems 
development is understood and developed. Examples are the object-oriented approach and the 
structured approach (e.g., data flow diagram). Methodologies, which are composed of specific 
procedures, are closely related to the more general and goal-driven approaches. An example is the 
unified process. The methodologies are used to guide information systems development. Finally, 
techniques can be seen as “well-defined sequence(s) of basic operations.” Examples of techniques 
are class diagram and use case diagram. If the techniques are properly completed, they can lead 
to specific (and measurable) results.

One common classification of research is pure research versus applied research. Pure research 
aims at expanding human knowledge, but does not necessarily find immediate application in 
practice or the real world. Development of new techniques or methodologies in systems analysis 
and design fall under this category. Applied research not only expands the knowledge base, but 
also can be applied to problems in the real world. Examples are the fine-tuning of an existing 
methodology and technique for use in an organization. With the goal of obtaining new knowl-
edge, pure research can move in any direction and is not constrained by the issue of whether the 
result is immediately useful or not. Later events may show that pure research becomes useful in 
unexpected places and unexpected ways. For example, while SIMULA I and Simula 67, the first 
two object-oriented languages, were developed in the 1960s, object-oriented programming only 
became popular in the 1980s.

Another way to classify research is to look at the underlying philosophies of the approaches, 
methodologies, or techniques. Hirschheim, Klein, and Lyytinen (1995) distinguished between the 
ontology and epistemology perspectives. Ontologies are ways to classify the world in terms of 
its unchangeable, foundational, and universal structures. The world of ontologies can be further 
decomposed into two separate perspectives, realism and nominalism. Whereas realism proposes 
that a set of absolute laws and structures underlies the universe, the nominalism perspective posits 
that there is no absolute set of law and structures, and that those that exist are created by humans 
via social networks and structures. The epistemology perspective of the world proposes to set a 
basis for what constitutes knowledge, how new knowledge is acquired, and what investigations 
into the world may be and how they should be conducted. The two endpoints of the epistemol-
ogy dimension are positivism and interpretivism. Positivism proposes that the scientific method 
can be used to explain relationships between entities in terms of their causes, and to discover the 
universal truth underlying the world. Interpretivism, on the other hand, assumes that no absolute 
truths, if they exist at all, can be scientifically proved or disproved.

Avison and Fitzgerald (2003) classified systems development methodologies into time-based 
eras, in which popular methodologies reflected the state of the art in terms of systems development 
in the general time frame or era. They described the 1960s and 1970s as the Pre-Methodology 
Era, during which the attention was focused mostly on the technical and hardware limitations. 
Examining the business needs underlying development was nearly always secondary. The Early 
Methodology Era was the time period between the late 1970s and early 1980s. The Systems 
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Development Life Cycle is a well-known artifact of this time, during which the focus of systems 
development shifted from hardware and technical constraints to the process itself. Unfortunately, 
the focus still did not exert adequate effort in identifying business needs. The methodology era, 
encompassing the late 1980s through the late 1990s, saw an explosion of methodologies in a variety 
of genres. The methodologies were (more or less) squarely aimed at ameliorating the deficiencies 
of the methodological approaches to systems development characterized in the earlier eras. Finally, 
from the late 1990s through the present, developers have gradually come to the realization that 
strict adherence to any given methodology, no matter how efficacious it might have appeared in 
success stories about it, could not guarantee the success of the next project it was used for. They 
named this the Post-Methodology Era.

Hirschheim and Klein (1989) presented another concept of systems development: paradigmatic 
thinking. Their effort developed and created what they called the “four paradigms of systems 
development.” They described the first paradigm as functionalism, in which systems develop-
ment was driven from outside, using formal and well-defined plans and tools. The elements of 
each system were seen as physical entities, and the structured methodologies could be seen as 
examples. Their second paradigm was termed social relativism, which viewed systems develop-
ment as happening from inside. Entities and structures were seen more as changing, dynamic, 
or evolutionary in nature. The various ethnographic systems development methodologies are 
examples of this paradigm. The third paradigm was radical structuralism, which emphasizes the 
need to overthrow or transcend the limitations placed on existing social and organizational ar-
rangements. This underlines the structure and analysis of economic power relationships. The last 
paradigm, neohumanism, seeks radical change, emancipation, and potentiality, and stresses the 
role that different social and organizational forces play in understanding change.

CLASSIFYING CHAPTERS IN THIS VOLUME

The systems development chapters in this volume are grouped into three broad categories: tech-
niques, methodologies, and approaches. This grouping relies on the Iivari, Hirschheim, and Klein 
(2001) classification scheme because of the fit between the scheme and the chapters presented 
here. While these authors used a four-level hierarchy that includes the above three levels as well 
as a paradigm level as an explanatory vehicle, this volume consists of chapters representing only 
the lower three levels—techniques, methodologies, and approaches.

The book has four sections based on three categories—techniques, methodologies, and ap-
proaches—because two chapters specifically discuss agent-oriented methodologies. Thus, there 
are two sections on methodologies.

Part I. Techniques for Systems Engineering and Requirements Elicitation

Techniques (Iivari, Hirschheim, and Klein, 2001) include the steps necessary for basic op-
erations, and if properly executed, can deliver metrical results. The following chapters in the 
volume present exemplary research designed to specify the important components of require-
ments elicitation.

Chapter 2, “Flow-Service-Quality (FSQ) Systems Engineering: A Discipline for Developing 
Network-Centric Information Systems” proposes a new engineering framework for reasoning 
about and developing systems of systems: the flow-service-quality (FSQ) framework. This 
chapter provides rigorous, practical engineering tools and methods to reason about system flows 
as first-class objects of specification, design, implementation, and operation. System flows are 
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realized as traces of system services, and their quality attributes are treated as dynamic, chang-
ing quantities that are measured during system execution.

Chapter 3, “Requirements Elicitation Techniques as Communication Channels: A Framework to 
Widen the Window of Understanding” investigates and highlights the criticality of communication 
—one of the foundations on which systems analysis and design rests—in the process of require-
ments elicitation. A broad reclassification of requirements elicitation techniques according to their 
communication emphasis is presented. This classification is used to develop a model that can be 
used to diagnose communication needs in a specific project setting and to provide guidance in 
the selection of requirements elicitation techniques best suited to that setting. This chapter offers 
suggestions for the practical application of the theoretic frameworks and identifies avenues for 
future research.

Part II. Methodology Foundation and Evolution of Systems Analysis  
and Design

Methodologies (Iivari, Hirschheim, and Klein, 2001) represent the specifics of how to implement 
the more abstract approaches. The following chapters examine or develop specific methodologies 
used in systems analysis and design.

Chapter 4, “Iteration in Systems Analysis and Design: Cognitive Processes and Representational 
Artifacts,” examines the concept of iteration and how it has been applied to systems analysis and 
design. It distinguishes between two domains of iteration: iterations inherent in cognitive processes 
during design, and iterations over representational artifacts about designs. This chapter reviews 
how the past research on systems analysis and design has treated iteration within these different 
domains, what we know about these iterations, and how these iterations have been shown to af-
fect design outcomes. It concludes with an observation that the differences between “iterative” 
or “agile” development and traditional methodologies lies not in the presence or absence of itera-
tion, but in the locus of visibility and control, and the associated timing and granularity of what 
is being iterated.

Chapter 5, “A Framework for Identifying the Drivers of Information Systems Development 
Method Emergence,” explores how unique and locally situated information systems development 
(ISD) methods unfold over time and why they emerge differently. The purpose is to identify the 
underlying process form and drivers of ISD method emergence. A theoretical framework is de-
veloped based on a synthesis of literature about contextualism, structuration theory, and change 
processes. This chapter reports a comparative analysis of two longitudinal case studies of method 
emergence in a Multimedia project and a Web project. It suggests that the theoretical framework is 
relevant for both researchers and practitioners to read a situation before project initiation, during 
development, and after project completion and to identify and leverage the dynamics inherent in 
or relevant to a particular situation and change process.

Chapter 6, “Transition to Agile Software Development in a Large-Scale Project: A Systems 
Analysis and Design Perspective,” reports the implementation of Extreme Programming, one 
of the agile software development methods, in a large-scale software project in the Israeli Air 
Force. The chapter also describes the transition from a plan-driven process to an agile one as it 
is perceived from the systems analysis and design perspective. Specifically, during the first eight 
months of transition, the project specifications and acceptance tests of the agile team are compared 
with those of a team that continues working according to the previous plan-driven method. This 
chapter discusses the role of systems analysts during the transition process and different develop-
ment models with respect to systems analysis and design.
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Part III. Agent-Oriented Systems Analysis and Design Methodologies

The two chapters in this section deal specifically with agent-oriented (AO) methodologies. Agent 
methodologies are gaining popularity, and we are pleased to present two exemplary research 
chapters in this area in the volume.

Chapter 7, “Agent-Oriented Information Systems Analysis and Design: Why and How,” argues 
that emerging applications such as e-business, peer-to-peer, and ubiquitous computing require new 
software development paradigms that support open, distributed, and evolving architectures. This 
chapter presents the Tropos methodology for agent-oriented software development and compares 
it with other proposals in the same family. The Tropos methodology is currently supported by a 
range of formal analysis tools, and its application has been explored along a number of fronts: 
design of Web services and business processes, design of autonomic software, and also design of 
Web sites and user interfaces.

Chapter 8, “Agent-Oriented Methods and Method Engineering,” surveys a number of con-
temporary agent-oriented methodological approaches and examines their evolution from and 
relationship to earlier object-oriented methodologies. This chapter proposes an approach that is 
based on the ideas of situational method engineering (SME). The author argues this as a better 
approach than attempting to create a “one-size-fits-all” AO methodology. A brief case study is 
included in the chapter.

Part IV. New Approaches and Architectures for Information Systems 
Development

Approaches (Iivari, Hirschheim, and Klein, 2001) exist at a relatively abstract level and as such 
propose the basic principles, goals, and concepts that provide a basis for explaining how systems 
development is understood and developed. At the same time, however, approaches are concrete 
enough to allow research to proceed. Conceptual and domain-based research represent the efforts 
in this section.

Chapter 9, “Application of the Fact-Based Approach to Domain Modeling of Object-Oriented 
Information Systems,” identifies a number of problems associated with the text analysis approach 
and proposes the use of the fact-based approach (also known as Object Role Modeling) as an 
alternative technique. This chapter shows how the fact-based approach can be used effectively, in 
conjunction with the use case approach, in the construction of domain models for object-oriented 
information systems. In particular, this chapter demonstrates (a) how the order of data entry de-
pendency can be used in identifying and organizing the fact types; (b) how the conceptual schema 
(that is, the fact-type model) can be validated in several simple but effective ways; and (c) how 
to convert the conceptual schema into a domain class model.

Chapter 10, “Systematic Derivation and Evaluation of Domain-Specific, Implementation-
Independent Software Architectures,” presents a systematic process and a supporting tool, Refer-
ence Architecture Representation Environment, for deriving and evaluating a high-level software 
architecture, the Domain Reference Architecture (DRA). The proposed architecture reflects quality 
goals prioritized by the architect, including reusability, maintainability, performance, integratabil-
ity, reliability, and comprehensibility. The DRA is an implementation-independent architecture 
composed of Domain Reference Architecture Classes, each of which specifies some portion of 
domain data and functionality.

Chapter 11, “OO-Method: A Conceptual Schema-Centric Development Approach,” examines 
the foundation of Model-Driven Architecture (MDA) and discusses its weak points. It introduces 
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an approach based on the formal specification language OASIS that sets the foundation for de-
livering on the promises of MDA. The chapter also presents a strategy to define and eventually 
automate the transformation of conceptual models into software systems. In addition, this chapter 
introduces OLIVANOVA Model Execution as an implementation of the OO-Method.

CONCLUSIONS AND POST HOC ANALYSIS

Reviewing and selecting chapters to include in the volume were difficult tasks for the three volume 
editors. The job entailed much more perspiration than inspiration. There is much more frustration 
than fun in the process. Nevertheless, now that the volume is ready, the editors emphasize that 
editing the volume was a challenging, but at the same time, rewarding experience. The chapters 
represent state-of-the-art research in the field and serve to inform readers of potential and future 
areas of research. Further, many of the contributing authors are internationally well-known re-
searchers in the area.
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Chapter 2

FLOW-SERVICE-QUALITY (FSQ)  
SYSTEMS ENGINEERING

A Discipline for Developing Network-Centric Information Systems

Alan Hevner, Richard Linger, Mark Pleszkoch,  
Stacy Prowell, and Gwendolyn Walton

Abstract: Modern enterprises are irreversibly dependent on large-scale information systems built 
from components whose function and quality attributes are not necessarily known a priori. The 
ad hoc and network-centric nature of these systems means that a complete static analysis of such 
systems is difficult or impossible. These systems grow and interconnect with other systems in ways 
that exceed current engineering techniques for intellectual control. We propose a new engineering 
framework for reasoning about and developing such systems of systems: the Flow-Service-Quality 
(FSQ) framework. Our aim is to provide rigorous, practical engineering tools and methods to reason 
about system flows as first-class objects of specification, design, implementation, and operation. 
System flows are realized as traces of system services, and their quality attributes are treated as 
dynamic, changing quantities that are measured during system execution.

Keywords: Systems Engineering, System Integration, Flows, Services, Qualities, Information 
Systems, Systems of Systems, System Analysis and Design, System Specification

MOTIVATION

Much of the complexity of modern information systems arises not from their size (e.g., lines of 
code, function points, objects), but from their adaptive, component-based, and network-centric 
natures. Such systems may exhibit indeterminate boundaries, as components and services come 
and go and other systems connect and disconnect during execution. For this reason, the devel-
opment of large-scale, modern information systems is largely a matter of systems-of-systems 
integration.

Assembling diverse commercial-off-the-shelf (COTS) components and network services to 
accomplish a particular mission has become fundamental to information systems engineering. 
These systems exhibit extensive asynchronous behaviors as a virtually unknowable interleaving of 
communications among system components. Components may be homogeneous, as with database 
and server pooling, or heterogeneous, as with Web browsers and sensor networks. To accomplish 
a particular mission, the system may use one collection of components. Later, to accomplish the 
same mission, the system may use a different collection of components. Because the boundar-
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ies of the system can change, perhaps as mobile devices move in and out of range, the system’s 
boundary, and thus its capabilities, can change over time.

The fundamental challenge is to identify stable, dependable anchors for system specification, 
analysis, design, and implementation on which we can build a unified engineering discipline for 
large-scale network system development. The Flow-Service-Quality (FSQ) framework provides 
these anchors (Hevner et al., 2002; Linger et al., 2002). The FSQ approach does not solve all these 
problems; rather it provides a rigorous framework with which to understand and reason about 
such systems. In the remainder of this chapter we introduce the FSQ approach and its underlying 
framework and semantic model as a discipline for engineering complex, network-centric systems. 
A central concept in this discussion is the treatment of mission task flows of system service uses 
as first-class artifacts for specification and design under intellectual control, despite the structural 
and functional uncertainties that characterize large-scale network systems. Other methods that 
focus on component and architecture specification and design often lose sight of the mission-
driven dynamic behavior that network systems are required to provide. FSQ engineering focuses 
on dynamic flow behavior and provides a stable framework within which these other methods 
can be employed to best advantage.

SERVICES, FLOWS, AND QUALITIES

Information systems can be viewed as networks of asynchronously communicating components, 
each of which provides some set of system services. These services are combined in various pat-
terns to satisfy business requirements, which are structured into mission-centric user tasks called 
flows. The flow structures of FSQ provide the bridge between mission requirements and the ser-
vices provided by various system components. Qualities of flow structures are determined from 
the qualities of the services invoked and the engineering of the flows on the network systems.

Services

A service is the basic abstraction in the FSQ framework. One or more components may provide 
a service in a variety of ways. The service may even be accomplished by invoking another large, 
networked system. For our purposes a service is simply a function provided by a system compo-
nent or set of components.

For example, user authentication may be viewed as a service. Authentication of users may be 
done in a variety of ways, against different sources, using multiple components. Figure 2.1 shows 
two examples of authentication services. On the left is a simple authentication service that main-
tains an internal database of encrypted passwords for comparison. On the right is a more complex 
authentication service that itself depends on other services. For example, if biometrics is avail-
able, it may be preferred. Because biometrics may not be available in every circumstance, other 
authentication mechanisms are also provided, such as a Lightweight Directory Access Protocol 
(LDAP) server and even simple password hashing. This component also provides a database of 
access rules that can provide user rights based on both the user to be authenticated and the form 
of authentication used.

A given service may participate in multiple asynchronous requests or even in multiple concur-
rently operating systems. The response of a service to a request may depend not only on the request 
but also on the complete history of prior requests. We treat services as black boxes (Prowell et 
al., 1999) whose response to any given request can depend not only on the request but also on the 
history of use of the service. This history of prior requests is captured as state information internal 



FLOW-SERVICE-QUALITY  (FSQ)  SYSTEMS  ENGINEERING     13

to the service. The full history of use and the specific internal state of the service are seldom avail-
able from the point of view of a given system or user task. Because of this fact, it is necessary to 
consider all possible responses resulting from all possible service states. Relational specifications 
must be used to define the complete set of potential responses for any given request (Janicki and 
Sekerinski, 2001), and effective abstractions may be used to manage the complexity of any such 
specification (Prowell and Poore, 2003).

Flow Structures

Accomplishing a mission-centric user task may require the invocation of several services, and 
these service invocations may be sequenced in a variety of ways. For example, a task might begin 
by invoking a service to authenticate a user, and proceed only if the user is properly authenticated. 
Exactly how a task is accomplished may change from one attempt to the next. If a required service 
X is unavailable, other service invocations may still run while the system waits for service X to 
become available.

While the specific sequence of service invocations to accomplish a task may remain unknown 
until the task is actually performed, we can establish constraints on the allowable sequences. For ex-
ample, we may always require successful user authentication before other services are invoked.

The specifics of which sequence of service invocations is to be performed at any given 
time and system environment are abstracted away by the concept of a flow structure. A flow 
is a mission-centric user task that can be accomplished by sequencing service invocations in 

User
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Password File

LDAP Server

Biometrics
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Authentication
Database

Figure 2.1  Authentication Services
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certain ways. The specific sequence of service invocations used at runtime is the flow instance. 
Flow structures constrain the potential sequencing of services, but typically do not determine 
a particular sequence.

We can express an overall information system design as a set of flow structures, where each 
flow represents some end-to-end user capability along with its quality requirements. Each flow is 
then further expressed as a sequence of service invocations in some order. For example, in Figure 
2.2 we see a user flow for a gasoline purchase transaction that invokes computation and com-
munication services of many different components through the roundtrip trace from a gas pump 
via a satellite communication system to a customer database and back again. This flow provides a 
framework for discussing the function and quality requirements of all participating systems, and 
provides insights into system dependencies and design risks.

Qualities

System requirements impose demands on reliability, performance, availability, responsiveness, 
security, survivability, and many other quality attributes. Because of the dynamic nature of network-
centric systems, an a priori static estimate of these qualities may not be sufficient. These quality 
attributes must be defined as functions whose values can be measured in near-real-time in order 
to make decisions about the mapping of flows onto the available services. In FSQ engineering we 
require that such attributes be characterized in such a way that they can be computed and used in 
decision making as dynamic characteristics of system operation. We wish to define these char-
acteristics as functions to be computed rather than simply as capabilities to be achieved. Such a 
function is a computational quality attribute (CQA). Each CQA is a mathematical function mapping 
current usage information, status of required services, and network environmental information to an 
attribute value that represents the current relevant measure of quality. This approach supports the 
description of any set of quality attributes and any models for describing each attribute, provided 
each model yields a representative numerical value for the quality attribute.

As an example, the prior user flow for a gas transaction in Figure 2.2 may implement surviv-
ability as a CQA. The status of relevant system services such as transmission site bandwidth 
and satellite position, along with any detected intrusion activities, would be used to produce a 
completely specified flow containing decision logic based on outcomes (desired or undesired) of 
service invocations in order to maintain survivability for critical flows where possible (Mead et 
al., 2000).
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pump
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Gas purchase flow:

Figure 2.2  A System-of-Systems User Flow
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A SEMANTIC MODEL FOR FSQ

In large-scale network systems, flows can engage in extensive traversals of network nodes and 
communication links, where the behaviors of invoked services cannot always be known and pre-
dicted. In this environment, a variety of uncertainty factors must be managed, including:

1.	 Unpredictable function—a service may be provided by commercial off-the-shelf (COTS) 
vendors or external service providers (ESP) without complete behavior definitions. Thus, 
components of unpredictable function and reliability may not perform expected opera-
tions every time or anytime it is invoked.

2.	 Compromised function—a service may have been compromised or disrupted by an intru-
sion or physical attack and may not be able to perform its function correctly or at all.

3.	 High-risk function—a service may not be able to provide adequate levels of quality at-
tributes as required by a flow.

4.	 Modified function—a service may be modified or replaced as part of routine maintenance, 
error correction, or system upgrade, with intentional or inadvertent modification of its 
function.

5.	 Asynchronous function—a service may be used simultaneously and asynchronously by 
other flows, and thus produce results dependent on unpredictable history of use, both 
legitimate and illegitimate.

These factors are pervasive behavioral realities of network-centric systems (Schneider, 1999). 
Dealing with them is an enterprise risk management problem with potentially serious consequences. 
It is vital to take appropriate actions to continue system operations in the environments they cre-
ate. FSQ engineering is intended to provide a systematic means for defining information system 
flows, services, and quality attributes despite these persistent uncertainties.

The mathematical semantics of the FSQ framework are defined to support development and 
verification of flows for such uncertain environments as a standard engineering practice. To allow 
for unpredictable behavior of services, flow semantics require specification of only the processing 
that a flow itself performs and not the processing of the services it invokes. Flow specification 
requires definition of appropriate actions by a flow for all possible responses of key services, both 
desired and undesired. Thus, if the behavior of an invoked service changes for any reason, the 
specification and verification of the invoking flow need not change. This approach accommodates 
the realities of today’s network systems and offers important advantages. It requires for mission 
survivability that the uncertainty factors be dealt with explicitly in specification, design, and dy-
namic execution, thereby addressing important aspects of enterprise risk management. It permits 
flows and reasoning about them to be localized yet complete. And it permits flow structures to be 
defined by simple deterministic structures despite the underlying asynchronous behavior of their 
constituent services. These deterministic structures can be refined, abstracted, and verified using 
straightforward compositional methods for human understanding and intellectual control.

It turns out that these objectives require extension of the traditional functional semantics model. 
The FSQ semantic model is based on the well-known concept of services as rules for mathematical 
functions (or relations if flows include concurrent operations), that is, mappings from domains 
(inputs, stimuli) to ranges (outputs, responses) (Hoffman and Weiss, 2001; Linger, Mills, and Witt, 
1979; Mills, Linger, and Hevner, 1986; Prowell et al., 1999). The key extension required to deal 
systematically with uncertainty is to make the histories of service invocations themselves part 
of the specified behavior of flows. Mathematically, this is achieved by including the invocation 
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stimulus history (ISH) of every service in the range of the function that represents the specification 
of a flow. In addition, because subsequent flow processing can depend on the responses from these 
invocations, the invocation response history (IRH) must be part of the domain of the mathemati-
cal function that represents the specification of a flow. The diagram of Figure 2.3 illustrates these 
semantics for a flow F invoking a service A.

I is the set of possible inputs to flow F, and O is the set of possible outputs from flow F. Thus, 
the semantics of F can be given by a mathematical function f with domain I x IRH and range O x 
ISH. It is this counterintuitive inclusion of service responses in the domain of F and service stimuli 
in the range of F that allows flows to manage uncertainty. In particular, IRH represents the range 
of possible service responses and thus embodies the uncertainty issues that must be recognized in 
flow behaviors. Flows must assess and act upon all possible responses, desired and undesired, that 
service invocations can produce. Of course, no semantics can force such informed design, they 
can only illuminate the desirability of doing so and provide means for it to be accomplished.

In this semantic model, the specification of flow F is not required to account for the behaviors 
that result due to invocation of service A. Rather, it simply defines the invocation of service A with 
certain parameters, and how the response from that invocation affects subsequent processing of F. 
This means, for example, that any lower-level services invoked by service A need not be part of the 
ISH and IRH of flow F. If this were not the case, the specification of F would change if service A was 
modified, for example, to invoke different lower-level services. This approach differs from traditional 
functional semantics, where the specification of F would be required to include the full effects of all 
lower-level service invocations by service A as a part of its functional specification.

This innovative approach to specification is essential to maintain intellectual control over flow 
specification and design. As noted, deterministic flows that invoke nondeterministic, asynchronous 
services can be modeled by deterministic mathematical functions, making human reasoning and 
analysis much simpler. Alternately, if the behavior of flows were nondeterministic, then the flows 
themselves would become far more complicated, and their semantics would need to be expressed 
as a mathematical relation from domain I x IRH to range O x ISH. This complex situation is 
avoided by our FSQ semantic model.

The flow-service semantic model described above is particularly suited to the common situation 
where service A already exists on a network, or is provided by COTS or ESP components with 
complex and possibly unknown functions. In cases where service A is new and must be designed as 
part of the implementation of flow F, these flow semantics can be combined with more traditional 
design and verification methods (e.g., Mills, Linger, and Hevner, 1986) to support reasoning about 

FLOW F

SERVICE A
IRHISH

I O

Figure 2.3  Flow–Service Semantics
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the combined behaviors of the system consisting of F and A together. In this way, the desired 
behavior of F and A can be used to guide the construction of A.

FSQ Systems Engineering

Figure 2.4 shows the use of flows, services, and qualities for both developing new systems and 
for understanding the behaviors of existing systems. Across the top we see the process of system 
design using flows. On the left, a set of flows defines the functionality and quality attributes that 
a network and its services must provide to support user requirements. These flows can be defined 
as structured sequences of service invocations. Moving right, the flows are refined in terms of 
services and their quality attributes. These services may be preexisting services on the network 
or may be newly developed if no existing service provides the proper functionality and quality. 
For example, in the figure, two services on the left are further refined in the middle, in each case 
into sequences of two lower level services that carry out the required operations. In addition, the 
initial conception of a flow may be modified to conform to the available architecture. Finally, the 
flows are mapped onto the network at the right-hand side of Figure 2.4.

Existing systems may be understood in the FSQ framework by abstracting from the network 
and service details to obtain the critical flows, as shown across the bottom of Figure 2.4. The 
resulting flows can become the basis for further system reengineering work or can be analyzed 
for their survivability, reliability, or other critical quality aspects.

DYNAMIC FLOW MANAGEMENT ARCHITECTURE

The right-hand side of Figure 2.4 shows the network. Some parts of the network may arise from 
the flows, but much of the network may be preexisting and independent of the original user flow 
set. The precise topology of the network and the quality attributes of the links and nodes are all 
time dependent. Some network links may become saturated with traffic, some service providers 
may become unreliable or fail altogether, and mobile devices may move in and out of range.

In such a system, there must be a dynamic system control to continually monitor the real-
time availability and quality of system services. The precise implementation of a flow in terms 
of sequencing of particular flows and services is a dynamic task. An FSQ manager, either as a 
centralized component or decentralized across the network, must manage these dynamic aspects 
and provide flow instantiation and management to assure that mission goals are met. This dynamic 
management to provide “self-healing” and to assure reliability (e.g., connectivity and availability) 
is already a common idea in networking; what we propose here is to extend these ideas to the 
entire system (hardware and software) to ensure survivability and robustness.

A dynamic flow management architecture (FMA) must be defined to provide such an FSQ 
manager. The FSQ manager accepts a demand from outside the system, perhaps from a user or 
from another system. This demand initiates a flow request, which may be queued based on priority. 
The FSQ manager evaluates the queued flow requests in terms of available services, other active 
flows, and computational quality attributes. Each flow request is then instantiated as a sequence of 
service invocations. The details of the instance execution are not static; services may be executed 
more than once, and the evolution of the flow instance may depend on the responses from various 
services. If the instance is unable to proceed because a given service becomes unavailable during 
the instance’s execution, the FSQ manager may suspend the flow until the service is available, or 
it may try to find a new mapping to comparable services to allow the instance to complete.

This dynamic management of flow instances should not be understood to alleviate the need 
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for system design. In fact, in order for the FSQ manager to correctly map each flow request to 
an appropriate flow instance that meets all requirements, each flow must be characterized in 
terms of services, their responses, and the appropriate next actions. This requires the definition 
of a flow structure language in which flows can be specified. Such a specification includes the 
necessary services, an ordering of these services, and their quality attributes. The services should 
be described at the highest level of abstraction possible and treated as “black boxes” in order to 
allow the maximum flexibility to implement the flow. These services may themselves be refined 
recursively into flows and lower-level services as necessary. By treating services as black boxes 
and writing flow specifications in terms of service responses, however obtained, such a system 
achieves referential transparency and provides an appropriate level of abstraction for managing 
systems-of-systems development and integration.

MANAGING COMPUTING QUALITY ATTRIBUTES

A CQA’s value is another responsibility for the FSQ manager. Local values for attributes must 
be combined to determine the end-to-end values for each flow. Alternately, a flow may impose 
particular attribute requirements on a service. The process of measuring, predicting, or estimating 
quality attribute values and then generating a modified set of flows that takes the attributes into 
account can adversely affect system performance. However, in a large networked system there is 
no other way to assure that each flow meets its quality requirements. Future research is needed to 
find better ways to monitor the state of quality attributes and to dynamically compute the system 
qualities available for the execution of flow instances.

When a flow demand is presented to the FSQ manager, the manager must assemble a collection 
of candidate flow instances and evaluate the CQA values for each instance. Flows that satisfy the 
required CQA values are selected, and one is chosen from among them, perhaps based on user-
specified priorities. Note that since the flow will unfold over time it is necessary that the FSQ 
manager predict the relevant CQA values at the time each given service will execute. Such a pre-
diction may be simple (assume no change from current value) or may employ various estimation 
techniques (assume some time distribution and extrapolate). The only essential aspect is that the 
CQA values are used to choose an appropriate flow instance from among the possibilities.

CONCLUSION AND RESEARCH DIRECTIONS

FSQ systems engineering recognizes flows, services, and computational quality attributes as first-
class concepts for understanding, developing, operating, and maintaining large-scale, network-
centric information systems. These concepts provide a unifying framework around which systems 
development methods, practices, and tools can be developed. The concept of dynamically map-
ping flows to available services relying on real-time computational quality attributes provides 
the ability to manage dynamic systems whose available services and network properties cannot 
be known a priori.

Theoretical foundations developed in this research can prescribe engineering practices that will 
improve system management, acquisition, analysis, development, operation, and evolution. The 
following observations summarize our research and development vision.

•	 FSQ supports complexity reduction and survivability improvement in development and 
operation of large-scale network systems composed of any mix of newly developed and 
COTS/ESP components.
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•	 FSQ provides systematic, scale-free semantic structures for requirements, specification, 
design, verification, implementation, and maintenance.

•	 FSQ supports seamless decomposition from user flows, services, and quality attribute re-
quirements to flow structures, services, and quality attribute implementations, with intrinsic 
traceability.

•	 User flows of services and quality attributes permit system development in terms of user views 
of services, as opposed to strictly functional decomposition or object-based composition.

•	 Flow structures are deterministic for human understanding and analysis, despite the uncer-
tainties of complex, network-centric behaviors, thus enabling compositional methods of 
refinement, abstraction, and verification.

•	 Flow structures reflect the realities of network-centric systems in dealing with the uncertainty 
factors, to support enterprise risk management and system survivability.

•	 Flow structures support the definition of attack and intrusion flows for assessing system 
vulnerabilities and compromises, as a basis for security and survivability improvements.

•	 Computational quality attributes reflect the realities of network-centric systems, in assessing 
and reconciling quality requirements and capabilities as an intrinsically dynamic process.

•	 Computational quality attributes provide a scale-free, computational use-centric (rather than 
system-centric) view of quality.

•	 Flow management architectures provide systematic and uniform methods for managing user 
flow instantiation and quality attribute satisfaction in execution.

•	 Foundations of flow structures can stimulate research on representation and analysis of flows 
at the requirements level within enterprises, and at the implementation level within system 
architectures.

•	 Foundations of computational quality attributes can stimulate research in modeling and 
dynamic evaluation of important quality attributes and metrics.

We are aggressively pursuing research directions to build the foundation theories, engineering 
processes, and automated tools to support the development of complex, network-centric systems 
with FSQ concepts.
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Chapter 3

REQUIREMENTS ELICITATION TECHNIQUES AS 
COMMUNICATION CHANNELS

A Framework to Widen the Window of Understanding

Robert M. Fuller and Christopher J. Davis

Abstract: This chapter highlights the criticality of communication in requirements elicitation. Using 
the concept of channel expansion, a broad reclassification of requirements elicitation techniques 
according to their communication emphasis is presented. This classification is used to develop 
a model that can be used to diagnose the communication needs in a specific project setting and 
to provide guidance in the selection of requirements elicitation techniques best suited to that set-
ting. The chapter offers suggestions for the practical application of the theoretic frameworks and 
identifies fruitful avenues for future research.

Keywords: Elicitation, Communication, Intersubjectivity, Channel Expansion Theory

INTRODUCTION

Requirements elicitation remains one of the most important and challenging steps in systems 
analysis and design. Difficulties in accurately identifying and capturing system requirements 
continue to be encountered and have been identified as a major factor in the failure of 90 percent 
of large software projects (Hayes, 2004; Standish Group, 1994). In this chapter, we explore com-
munication—one of the foundations on which systems analysis and design rests—in the process 
of requirements elicitation. The focus on this phase of the analysis and design process is prompted 
by the frequency and persistence of concerns about the adequacy of the tools and techniques used 
and the important role requirements elicitation plays as a foundation for success in subsequent 
design phases (Marakas and Elam, 1998; Roberts et al., 2005).

For requirements elicitation, a primary indicator of success is that requirements meet end-user 
needs. However, this outcome has proved difficult to achieve because users frequently experi-
ence difficulty in fully articulating their needs—they either cannot explain them in a manner that 
is readily intelligible by the analyst, or they have not been directly addressed by the analysts’ 
inquiries (Moores, Change, and Smith, 2004; Siau, 2004).

This dialogue between the analyst and the user during requirements elicitation is critical to 
the success of information technology (IT) projects. As “gatherers” of requirements, systems 
analysts assume that users know their business. However, ineffective communication during 
requirements elicitation has persistently been blamed for information systems that disappoint 
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end users, resulting in unused, poorly used, or misused systems. As the range of “businesses” 
that information systems support becomes wider and more specialized, these communication 
challenges increase.

Prior research has identified the need for effective collaboration between the analysis and 
design and user communities (Berry and Lawrence, 1998; Browne and Ramesh, 2002; Davis, 
1982; Kim and Peterson, 2001). Communication between users and analysts is accomplished us-
ing a range of methodologies, tools, and techniques. In this chapter, we consider the efficacy of 
user–analyst communication at the elicitation tool/technique level. This work was prompted by 
the persistence of communication difficulties in requirements elicitation despite both the growing 
maturity of systems analysis as a professional field and the wide range of communication tools 
and techniques available.

Recent research shows that communication persists as a principal locus of the issues and 
concerns in requirements elicitation (Roberts et al., 2005; Smith, Keil, and Depledge, 2001). 
Clearly, as the range of information systems applications and development methodologies, tools, 
and techniques expands, effective communication becomes an increasingly critical imperative for 
effective requirements elicitation.

Over the past thirty years, research and development efforts have explored the potential of a 
range of techniques to facilitate user–analyst communication. A review of this work identifies 
three broad communication emphases, from providing methods to help the analyst ask questions to 
providing methods to help users frame their responses to the analyst. Although they strive for the 
common goal of optimizing the identification, description, and capture of user requirements, there 
are substantial variations in the purpose of the communication they facilitate.

A review of the requirements engineering literature highlights the introduction of elicitation 
techniques such as interviews, brainstorming sessions, scenario analysis, use case modeling, con-
textual inquiry, and even ethnography (Alter, 2004). These more qualitative, interpretive techniques 
are drawn from the social sciences. They contrast with the more traditional engineering origins 
of elicitation techniques and represent attempts to provide analysts with deeper insight into, and 
understanding of, the user’s world (Somerville and Ransom, 2005). However, the inherent dif-
ferences between these elicitation techniques as a means of communication between users and 
analysts have remained largely unexplored. This has given rise to communication technique (or 
“channel”) compatibility issues: misinterpretations, misconceptions, and mistakes in requirements 
elicitation have arisen from their injudicious use (Boehm and Huang, 2003).

Despite attempts to complement traditional engineering techniques (e.g., flow charting, note 
boards, etc.), analysts face a continuing dilemma. They need robust and reliable inquiry techniques, 
but ones that do not constrain their ability to understand the end user’s world or limit the opportu-
nities for innovation and invention. Likewise, these techniques need to be as effective, efficient, 
and appropriate as possible given the business context and the understanding required.

Effective requirements elicitation thus remains a central and critical activity in the systems 
analysis and design process: this chapter explores the nature of the communication challenges 
that confront analysts and users during requirements elicitation. The chapter begins by providing 
a review and classification of requirements elicitation techniques that highlight their differing 
communication emphases. The classification is used to develop a conceptual model of the user–
analyst communication process that identifies the communication characteristics of a range of task 
(requirements elicitation) contexts. We explain how the model can be used to identify commu-
nication issues that give rise to ambiguity and misunderstanding during requirements elicitation. 
Following discussion of the range and nature of these issues, we map a range of requirements 
elicitation techniques into the framework. The main body of the chapter provides analysis of the 
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“fit” between various requirement elicitation techniques and the communication demands of the 
contexts in which they might be applied.

The chapter concludes by showing how the framework can be used to provide guidance on 
the selection of requirements elicitation techniques by practitioners. It also identifies a number 
of communications “gaps” and conflicting agendas—areas where further research might enhance 
the tools and techniques used for requirements elicitation.

COMMUNICATION

Communication has been defined as “a process in which participants create and share infor-
mation with one another in order to reach a mutual understanding” (Rogers, 1986, p. 199). 
Creating and sharing information is inherently a social exchange process, in which developing 
understanding about information received from others requires both information transfer and 
processing. Developing a mutual understanding requires that individuals pass information 
about how they understand and interpret the world around them, as well as processing to make 
sense of the passed information itself. Thus an important outcome of successful communica-
tion is the development of mutual understanding about the information and the meaning that 
each participant attaches to it (Daft and Lengel, 1986; Miranda and Saunders, 2003; Rogers, 
1986; Te’eni, 2001).

Communication channels facilitate or enable individuals to communicate with others to develop 
mutual understandings (Rice et al., 1990). These channels include many of the media that are 
used to communicate today, such as telephone systems and voice mail, as well as other computer-
supported media, such as videoconferencing, bulletin boards, instant messaging, and e-mail. 
However, in a more general sense, a communication channel could be any device or technique 
that facilitates, guides, or otherwise enables individuals to communicate with one another. While 
much of the recent research into communication has focused on newer media such as e-mail and 
videoconferencing, other more commonplace communication methods, such as reports, documen-
tation, interview scripts, and agendas are also communication channels that in some way impact 
the nature of how individuals communicate.

Considering the interaction between user and analyst, the methods, tools, and techniques 
employed by the analyst serve as channels that simultaneously guide, constrain, and facilitate 
communication as the analyst attempts to understand the requirements of the business situation 
at hand. In common with other communication channels, the techniques employed by the analyst 
may be more or less effective dependent on the context and manner in which they are used (Daft 
and Lengel, 1986; Dennis and Valacich, 1999; Dennis, Wixom, and Vandenberg, 2001).

A significant amount of research has examined how communication channels can impact the 
communication performance (development of shared understanding) between two individuals. In 
general, this stream of research has focused on the prediction of performance from using certain 
communication channels for certain types of communication-oriented tasks. The findings from this 
research, while often ambiguous, do acknowledge that characteristics of the communication task, 
certain salient characteristics of the channel, and characteristics of the individuals communicating 
can influence performance of a particular medium for a task (Dennis and Kinney, 1998; Mennecke, 
Valacich, and Wheeler, 2000; Rice and Shook, 1990). Furthermore, to the degree that individuals 
have greater or lesser levels of familiarity with the communication task or topic, the individuals 
involved in the communication, and the channel that supports or guides the communication, dif-
ferential results in communication performance can arise (Carlson and Zmud, 1999; Dennis and 
Valacich, 1999; McGrath, 1991).
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To understand how the use of communication channels can support the development of shared 
understanding between individuals, we use the theoretical lens of channel expansion theory—
CET—(Carlson and Zmud, 1999). CET identifies certain experiences as important in shaping 
how an individual may perceive (and use) a certain communication channel as being rich enough 
to facilitate the communications necessary for efficient development of shared understanding. 
Specifically, it proposes that an individual’s experiences with the communications channel (e.g., 
communications method or technique), message topic, organization context, and communication 
partner can influence the perception and use of the communication channel. CET proposes that 
as levels of experience across these four knowledge bases increase, individuals will be able to 
more efficiently send (ask) and receive (interpret) messages with leaner communication chan-
nels, and still be able to develop understanding. Conversely, it suggests that if an individual has 
less experience with the message topic, the organizational context, or the communication partner, 
they will require a richer communication channel to enable efficient communications to develop 
understanding.

Here, we apply channel expansion theory to suggest that individuals (e.g., analysts) with lesser 
degrees of experience across three of the knowledge bases central to requirements elicitation—
message topic, organization context, and communication partner—would benefit from the use of 
a richer elicitation technique or “channel”1 to efficiently send and receive messages and develop 
understanding more than would individuals with greater experiences in these knowledge bases. 
In the context of requirements elicitation, this accords with previous research findings suggesting 
that the quality of the requirements elicitation process varies according to the analysts’ level of 
experience with the specific domain (the message topic) that the information systems is attempt-
ing to address, the organizational context in which the information system will be implemented, 
and the communication partner with whom they are interacting. CET leads us to propose that, 
based on these levels of experience, elicitation techniques will vary in their effective support of 
user–analyst dialogue. Furthermore, we propose that this variation also directly affects both users’ 
and analysts’ capacity to learn from their experience of systems analysis and design activities, 
processes, tools, and techniques. In turn, crucially, this affects the degree to which they are able 
to expand their other three knowledge bases (topic, context, and partner).

For requirements elicitation, we focus specifically on the empirical significance of two of 
these knowledge bases, experience with the topic and experience with the organizational context 
in which the topic exists. These two components of CET are at the core of the communication 
activities performed between user and analyst during requirements elicitation, since they repre-
sent the analyst attempting to better understand the requirements for an information system—the 
topic domain—within the context of use—the organizational environment. Since the analyst is 
interested in understanding the requirements for an application in a specific context, these two 
knowledge bases are fundamental to the process of analysis and design: they strongly influence 
the characteristics of the elicitation techniques best suited to elicit requirements.

From a communication perspective, elicitation techniques fall into three broad categories, 
each characterized by differences in the organizational context and application domain as noted 
in Table 3.1, on page 26.

Verification (Nonrefutation) Focus

Certain elicitation techniques employed by analysts during requirements elicitation are geared 
toward the verification of requirements as understood by the analyst. These techniques are 
driven by the analyst in terms of the questions asked. Typically, the emphasis is on nonrefuta-
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tion. The range of responses that can be provided by the user is constrained so as to provide 
auditable “proof” of the dialogue. While they are less expensive and easier for distribution, they 
are limited in the richness of the responses that could be received from the user, and provide 
little control over the potential (mis)interpretation of questions. The primary assumptions of 
these types of elicitation techniques are that the analyst knows the right questions to ask, that 
a relatively finite set of questions can develop an understanding of the business scenario, and 
that the user is able to understand and appropriately respond to the questions. These elicitation 
techniques exploit the analysts’ high level of experience with an organizational context or ap-
plication domain, and focus on the provision of effective methods to verify these experiences. 
Techniques such as questionnaires and structured interviews exemplify this class of elicitation 
techniques.

Collaboration Focus

Other elicitation techniques are less structured, controlled, and driven by the analyst, and place 
greater emphasis on collaborative—rather than confirmatory—communication between user and 
analyst. We categorize these techniques as collaborative since they tend to be less formal and 
allow users some latitude to negotiate the focus or agenda of the analysis within the structural 
constraints of the technique. Unlike verification techniques, these techniques allow the user to 
provide requirements in various formats and even allow the user some degree of control over the 
elicitation process. As a result, the format of the requirements elicited often requires additional 
work on the part of the analyst to condense and understand. They also tend to require a more 
iterative process between user and analyst to make sure that understanding of the requirements 
has occurred. These techniques generally assume some level of knowledge by the analyst of the 
organizational context and/or application domain, but more information is necessary to enhance 
understanding. Therefore, collaborative techniques allow the analyst to retain some control over 
the elicitation process to develop understanding in those areas that are less understood, while al-
lowing for some verification where prior knowledge does exist. Techniques such as semistructured 
interviews, scenario analysis, and use cases are exemplars.

Generation Focus

Our final category encompasses those techniques that are much more free-form in nature and al-
low for maximum variation in user responses with potentially significant loss of control over the 
interaction from the perspective of the analyst. These types of techniques we identify as exploratory, 
as they tend to be free of bias and overall control from the part of the analyst, and there tends to 
be less structure involved in the interaction. The focus is on learning as much as possible about 
potential requirements, and the direction of the interaction is not driven by the analyst. Given the 
lack of experience with the organizational context and application domain, these techniques are 
designed to provide a rich set of information to allow the analyst to more effectively develop these 
knowledge bases and understand the requirements specific to the business scenario of interest. 
Techniques such as observation, RepGrid analysis, and contextual inquiry exemplify these types 
of techniques.

The knowledge bases and communication foci discussed above raise questions about the ef-
ficacy of requirements elicitation techniques as communication channels in the wide range of 
organizational contexts in which systems analysis and design is undertaken.
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COMMUNICATION FOR REQUIREMENTS ELICITATION

Prior research attempting to improve on the requirements elicitation process focuses on the two 
primary populations involved in this process, the user and the analyst. Much of this research has 
usually attempted to overcome the challenges faced by analysts in eliciting requirements from 
users by focusing either on the cognitive limitations within these populations of information 
processors, by examining the conflicts that occur among these populations, or by examining the 
obstacles in communications between them (Byrd, Cossick, and Zmud, 1992; Davis, 1982; Siau 
and Tan, 2005; Valusek and Fryback, 1987).

Research focused on overcoming challenges within individuals and resolving conflicts among 
the two populations has been instrumental in the larger context of requirements elicitation. Within 
issues such as memory limitations, bias, and bounded rationality have generated research into 
methods and techniques to overcome these cognitive limitations, leading to the introduction of 
various techniques such as devil’s advocacy and what-if analyses into the systems analyst’s rep-
ertoire (Browne and Ramesh, 2002). Likewise, research considering the conflicts between these 
populations has examined and developed techniques to minimize or rationalize the conflicts that 
occur from elicitation, as the requirements may themselves be complex, contradictory, too large, 
or impossible to satisfy (Valusek and Fryback, 1987). The research from this stream of literature 
has introduced methods and techniques such as requirements interaction management (Robinson, 
Pawlowski, and Volkov, 2003), multiviewpoint analysis (Horai, 1996), and requirement collabora-
tion systems (Chen and Nunamaker, 1991).

Our focal interest in this chapter is on the fundamental communication-based techniques and 
methods available for use by an analyst that underlie the acquisition and understanding of system 
requirements. This research on the interaction between users and analysts considers more closely 
the communication challenges that can impede the requirements elicitation process (Davis, 1982; 
Valusek and Fryback, 1987). These problems often come about due to variations in the richness of 
the knowledge bases between users and analysts, and by the inherent complexities of the informa-
tion that is needed by both parties to define and articulate the business context and requirements. 
To illustrate the range of communication challenges that arise from variations in the knowledge 
bases of users and analysts, we use personal construct theory (Gaines, 2003; Hudlicka, 1996; 
Kelly, 1955) and elements of the Johari window (Luft, 1970) to classify them.

Personal construct theory (Kelly, 1955) suggests that individuals construct their own interpre-
tations of the world around them. As such, individuals may differ in their interpretations of the 
world through this construction process. It is through a social process that these constructions are 
shared between individuals to develop what may be called communality, where two individuals 
share a similar construction of a particular event or world subject. In the systems development 
process, it is through the social process of requirements elicitation where the analyst attempts to 
develop this communality, by understanding and capturing the constructions of a user that identify 
potential requirements for the information system.

The Johari window is a depiction of the states of awareness between two individuals. It suggests 
that two individuals have four states of awareness in any interaction. These four states come about 
due to differences in each individual’s knowledge of him/herself and the other individual involved 
in the interaction. Figure 3.1 identifies four states of awareness on the degree of mutuality in the 
knowledge bases of user and analyst. The four quadrants (each a classification of intersubjective 
experience) indicate how these two types of individuals may share understanding and interpreta-
tions about the business context of interest. It also enables a categorization of the communication 
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challenges faced by the user and analyst when attempting to come to a mutual understanding 
regarding a business situation of interest.

In requirements elicitation, there is often a common ground (a) where requirements are known 
by both parties—what we call conspicuous requirements. These requirements are known and 
understood by both the user and analyst due to their shared prior experiences in the domain of 
interest. However, requirements outside this shared area represent a number of challenges to both 
the analyst and the user.

One set of communication challenges exists when there are likely some potential requirements 
(b) that are known by the analyst but not known by the user. These potential requirements come 
about due to the unique experience the analyst has in the system domain that is not shared by the 
user. Increasing the size of the shared area (a) usually comes about through the application of the 
analyst’s experience and skills to identify patterns (Bolloju, 2004) or common system requirements, 
effectively enlarging area (a) upward. The analyst must be able to effectively communicate these 
potential requirements to the user to determine whether they are also requirements in the current 
context (Davis, 1982). This application of the analyst’s experience in requirements elicitation 
seeks to exploit the opportunity to reuse some previously derived design artifact (Purao, Storey, 
and Han, 2003).

Another set of communication challenges exists when there are potential requirements (c) known 
by the user, but not known by the analyst. These potential requirements come about due to the 
unique experience the user has in the system domain that is not shared by the analyst. Unless the 
user—typically an expert of some kind—can identify and articulate these requirements, they may 
go unidentified and unshared with the analyst, limiting the functionality of the system. To identify 

Figure 3.1  The Requirements Appreciation Model
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these requirements and increase area (a) to the right generally involves the analyst’s attempt to 
get at the information that is known by the user (Browne and Ramesh, 2002; Gaines, 2003). To 
identify and capture these requirements, it is generally assumed that the analyst can ask the right 
questions and prod for more information, and that the user can understand and answer the ques-
tions. It is hoped that such questioning prompts the user’s recognition of unknown (to the analyst) 
needs, thereby eliciting these additional requirements.

Finally, a set of communication challenges exists when there are potential requirements (d) that 
are not known about by the analyst to ask, and not known by the user to request. These require-
ments are outside the immediate experience of both the user and analyst and represent opportunities 
arising from completely new concepts. These requirements are often neither “captured” nor even 
realized during typical requirements elicitation, but may be realized later, for example, when the 
system has been implemented and is in use. Such unrealized requirements frequently manifest 
themselves as change requests, system enhancements, or, euphemistically, as “lessons learned.” To 
successfully elicit these requirements demands communication techniques that facilitate mutual 
learning or co-discovery (Purao, Storey, and Han, 2003; Siau, 2004). In turn, the enriched com-
munication facilitated by these techniques can result in design innovation and further experiential 
learning for both the analyst and user.

REQUIREMENTS ELICITATION TECHNIQUES AS COMMUNICATION 
CHANNELS

The prior sections explain that in a given systems development project, the analyst and user will 
have some level (higher or lower) of shared understanding of the given business scenario of 
interest. Depending on the knowledge that the analyst may have about the business scenario, the 
analyst will benefit from certain types of interactions (facilitated through elicitation techniques) 
with the user to increase his or her understanding about the business context. However, it is evident 
that different elicitation techniques will likely yield different requirements information about the 
business scenario (Marakas and Elam, 1998).

From channel expansion theory, we highlight two knowledge bases that are particularly relevant 
to the efficacy of elicitation techniques in increasing analyst understanding: the analyst’s experience 
with the message topic (application domain) and the analyst’s experience with the organizational 
context. These bases directly affect the ability of analysts to articulate the essence of the user(s) 
requirements—a mutual understanding of the context-specific focus of the analysis and design 
effort. The framework in Figure 3.2 uses these bases to provide a conceptual model of the “loca-
tion” of the requirements elicitation techniques categorized in Table 3.1 (see page 26).

Figure 3.2 elaborates the classification set out in Table 3.1, incorporating the knowledge bases 
proposed by Carlson and Zmud (1999). The result is a conceptual model, the horizontal boundaries 
of which indicate the interdependence of the analyst’s domain and application experience. The 
model highlights the need for balance between the conceptual “repertoires” of analyst and user 
in order to elicit mutually understandable requirements. For instance, an analyst with a wealth 
of application experience might feel able to reconceptualize users’ wants in terms of previously 
delivered systems (or “solutions”). However, if the analyst’s experience with the specific organi-
zational context is modest, there is—as our conceptual model suggests—a need to move out of 
the “comfort zone” of the focus on verification. Figure 3.2 highlights the communication tradeoffs 
that need to be considered during systems analysis and design in order that requirements are 
elicited—rather than usurped—from their context.

Figure 3.2 extends from Figure 3.1 in that it takes the perspective of the analyst in the require-
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ments elicitation process and is based on the analyst’s understanding of the application domain 
and organizational context (usually where the user is expert). As a result, it highlights the types 
of communication interaction and focus given the analyst’s understanding and experience within 
context and domain where requirements are to be understood. Where the organizational context 
and application domain is well understood, the communication is more focused on a verification of 
the conspicuous requirements. Where there is a hybrid or mix of understandings, the communica-
tion must take on a more collaborative focus, where the analyst must both apply his or her own 
experience and rely on experiences of the user to understand requirements. Finally, where there 
are higher levels of unfamiliarity with the organization context and/or application domain, the 
communication must have a more generative focus, enabling mutual discovery of requirements.

In combination, Figures 3.1 and 3.2 highlight the need for awareness of both communication 
constraints and opportunities in requirements elicitation. They can be used as a framework for the 
selection and combination of requirements elicitation techniques. Consider the following brief 
scenario. An experienced systems analyst is invited to undertake a project to develop a Web-
based front end to the database system in use in a general medical practitioner’s office. Although 
competent in both database and Web design, and familiar with the business processes of an HMO 
through experience as a patient, the analyst would almost certainly be unfamiliar with the meaning 
and use of the clinical coding schema central to the diagnostic, treatment, reporting, and billing 
procedures. The analyst’s preliminary work with the users should identify a need to apply the us-
ers’ experience—individually and collectively—to increase his/her contextual knowledge. Thus, 
this project would be located in quadrant (c) of Figure 3.1.

Figure 3.2  Knowledge Bases and Communication Focus
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In order to develop the contextual knowledge required to address the clinical coding process in 
the local context, the analyst could use Table 3.1 to select a combination of elicitation techniques 
that will provide the collaborative, negotiative, and/or generative capacity to optimize communica-
tion with the users and thus to fully appreciate the significance of the otherwise “inconspicuous” 
clinical coding scheme.

Without this insight, there is a strong possibility that analysts might choose to use questionnaires, 
structured interviews, and other techniques with which they are familiar. However, this example 
suggests that rather than relying exclusively on these more verification-focused techniques, the 
requirements elicitation process would be enhanced by incorporating contextual inquiry, cognitive 
mapping, or one of the other “generation” techniques in order to increase the “bandwidth” of the 
communication channel between the analyst and users.

IMPLICATIONS FOR REQUIREMENTS ELICITATION PRACTICE  
AND RESEARCH

Our review of requirements elicitation techniques—summarized in diagrammatic form in Figure 
3.3—shows that they have potential to constrict or narrow the focus of the requirements elicitation 
process. The predetermined content of questionnaires and other verification techniques can be 
compared to newspapers: although they do not tell you what to think, they do direct what analysts 
and users think about.

It is our hope that the conceptual framework presented in Figure 3.3 will enable researchers 

Figure 3.3	 Requirements Elicitation Techniques Mapped to Knowledge Bases and  
Communication Focus
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and practitioners to better appreciate the capacity of epigenetic requirements elicitation techniques 
such as cognitive mapping (Brooks, Davis, and Lycett, 2005; Siau, 2004) to “expand” the com-
munication channel between users and analysts, reducing the likelihood that requirements will be 
missed or misunderstood. Likewise, it suggests that for many elicitation processes, it is possible 
that a healthy mix of these techniques as opposed to the preponderance of one technique would 
provide a richer basis for understanding the development scenario.

The framework briefly outlined here has already proved its diagnostic worth in a number of 
organizational settings. However, further empirical research is required to refine it and demonstrate 
its utility: such research will be undertaken in the near future. While some research has examined 
the use of various elicitation techniques and the resultant information they provide, little compara-
tive research has explored the degree to which the elicitation technique used actually constrains 
or limits the understanding or types of understanding that analysts can develop about a business 
context. There is an opportunity—particularly across elicitation types (verification, collaboration, 
and generation)—for future research to more closely examine the level of understanding that 
analysts develop from their use of specific elicitation techniques.

Despite its value, our framework also carries a significant “health warning” for practitioners. 
Although superior to traditional techniques in terms of their communication “bandwidth,” the more 
collaborative and generative techniques proposed in Table 3.1 are conceptually rather “alien” to 
requirements engineers (Lerouge, Newton, and Blanton, 2005). This highlights the need to consider 
the development and training issues that face the practitioner community (Bajaj et al., 2005; Kim, 
Hahn, and Hahn, 2000). Nevertheless, we believe this is a worthwhile enterprise. Overcoming 
some of the mis- and mal-communication in requirements elicitation could substantially reduce 
information systems failures, users’ dissatisfaction with systems, and, ultimately, development 
costs.

NOTE

1. We use the term elicitation technique to refer to user–analyst communications channels or tools in a 
more general sense.
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Chapter 4

ITERATION IN SYSTEMS ANALYSIS AND DESIGN

Cognitive Processes and Representational Artifacts

Nicholas Berente and Kalle Lyytinen

Abstract: The concept of iteration is fundamental to systems analysis and design practice and 
methods. In this chapter we explore the notion of iteration and distinguish two domains of itera-
tion: iterations associated with cognitive processes that take place during design and iterations 
over representational artifacts about the design. Cognitive iterations can be concerned with the 
design, the design process, or stages within the design process. Representational artifacts can take 
the form of descriptive documentation of the system or the executable code itself. We discuss the 
claimed impacts of “iterative development” and compare these impacts to empirical findings on 
the effects of iterative methods. The findings are generally consistent with expected outcomes. We 
conclude with the observation that the differences between “iterative” or “agile” development 
and traditional methodologies lie not in the presence or absence of iteration, but in the locus of 
visibility and control, and the associated timing and granularity of what is being iterated.

Keywords: Iterative Development, Design Iteration, Evolutionary Prototyping, Evolutionary En-
hancement, Software Prototyping, Agile Methodologies, Rapid Application Development

INTRODUCTION

Recent agile methods recognize “iterative development” as a fundamental design principle 
(Cockburn, 2002). Yet, the idea of iteration is not new—system analysis and design has always 
been iterative! From the earliest development methodologies, the concept of iteration has been 
inherent in discussions about system design, though not always explicitly. Therefore, for those 
researching and developing systems it is important to understand what is iterated during design, 
why it is iterated, and what the impacts of this iteration are.

In this chapter we explore the concept of iteration and how it has been applied to systems analy-
sis and design. We distinguish between two domains of iteration: iterations inherent in cognitive 
processes during design, and iterations over representational artifacts about designs. Cognitive 
iterations are concerned with the design object itself, the design process, or stages in the design 
process. Iterations of representational artifacts take place across descriptive documentation associ-
ated with the system and its components or the executable code. Table 4.1 depicts the framework. 
Our goal is to review how past research on systems analysis and design has treated iteration within 
these different domains, what we know about these iterations, and how these iterations have been 
shown to affect design outcomes. We do this by surveying the main streams of the systems analy-
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sis and design literature and soliciting the main findings through a literature review. We aim to 
offer readers an understanding of how iteration has been defined and treated in both prescriptive 
and empirical studies of design in order to determine what we know and do not know about the 
impacts of different types of iterations under different design contingencies.

The remainder of the chapter is organized as follows. First, we provide a description of our 
sampling of the theoretical literature associated with this framework and then review the sparse 
empirical body of research on the effects of iteration. We observe that empirical research on 
iteration focuses almost entirely on one type of iterating artifact: the evolutionary prototype. 
The findings associated with evolutionary prototyping are generally consistent with expected 
outcomes.

We conclude the chapter with a new perspective on iteration in systems analysis and design. 
As iteration forms a fundamental property of all systems analysis and design, then we must ask 
what, exactly, is the difference between iterative or agile, and traditional, “noniterative” develop-
ment? If it is not the presence or absence of iteration, we need to have a more refined vocabulary 
to analyze differences among iterations and the criteria that can be used to spell out those differ-
ences. We accordingly suggest that these differences lie in the criteria that define the content and 
outcomes of iterative behavior as defined by notions of (a) iteration visibility—who can observe 
it? (b) control—who can control it? (c) granularity—what is being iterated and at what level of 
detail? and (d) timing—when do the iterations occur?

This insight challenges researchers to be mindful of the perspectives that designers and other 
stakeholders assign to various forms of documentation and to the executable code itself. The timing 
and level of detail where evolving artifacts are made visible affect the perspectives of the various 
stakeholders associated with the project, and these perspectives, in turn, affect project outcomes. 
We stress that iteration must be understood in terms of multidimensional, dynamic behaviors that 
are central to design, not as an unproblematic “thing” that either exists or does not.

ITERATION DEFINED

We need to carefully explore the concept of iteration because it underpins all systems develop-
ment practices. The term “iteration” is common in a variety of disciplines. It can be defined as 

Table 4.1

Iteration Framework

Cognitive iterations

The design • evolving perspectives of the design in the minds of the 
designers

The design process • conceptions of design practices in the minds of the 
designers

Stages in the design process • conceptions of progress or location within the design 
practices

Iterations of representational artifacts

Documentation • material artifact representing some aspect of the design or 
design process

Software code • the design object itself, which acts as both a 
representational artifact and the fundamental component of 
the anticipated system
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“the repetition of a process” in computer science, “a specific form of repetition with a mutable 
state” in mathematics, and in common parlance it is considered synonymous with repetition in 
general (Wikipedia, 2007). The “iterative method” describes a problem-solving methodology in 
many fields, including computer science and mathematics. These methods share the description 
of techniques “that use successive approximations to obtain more accurate solutions . . . at each 
step” (Barrett et al., 1994). The problem-solving system is said to converge when a solution that 
satisfies the problem criteria is reached through successive iterations.

It is no wonder the term “iteration” is not used consistently to refer to the same aspect of 
systems design in the extant literature. For example, for software designers, iteration commonly 
refers to the cyclical generation and testing of increasingly functional software code (Beck, 2002), 
but it can also describe the repetition of a phase of development due to rework (Davis, 1974), or 
successive subphases within a main phase (Iivari and Koskela, 1987). Less common applications 
also abound. For example, Checkland and Scholes (1999) indicate that the cyclical comparison 
of conceptual models to the real world represents a form of iteration. Iterative activities also often 
go by different names such as “prototyping” when designers iteratively elicit user input (Alavi, 
1984), “rounds” when designers iteratively search for a design solution to reduce functional or 
implementation risk (Boehm, 1988), or even a “dance” of interactions among designers and users 
toward increased mutual understanding (Boland, 1978).

Although all of these uses bear a Wittgensteinian family resemblance (Blair, 2005), the funda-
mental aspect of iteration relates to a question of whether iteration is goal-driven or mere repeti-
tion. Dowson illustrates the difference vividly when speaking of a choice between Sisyphus and 
Heraclitus while modeling software processes:

The Greek mythic hero Sisyphus was condemned to repeatedly roll a rock up a hill, never to 
quite achieve his objective; the Greek philosopher Heraclitus maintained that “You can never 
step in the same river twice.” That is, do we see iteration as repetition of the same (or similar) 
activities, or does iteration take us to somewhere quite new? (Dowson, 1987, p. 37)

Here we contend that equating iteration with mere repetition does not capture the most salient 
aspect in its common usage for systems analysis and design, computer science, or mathematics. 
For us, use of the term “iteration” implies a progression toward an objective, whereas repetition 
has no such implication. Software development activity accordingly involves work toward closure, 
which is the delivery of a product. Even if repeated activities bear a strong resemblance to each 
other, some learning in the development project can be reasonably assumed to take place within 
each step while the same development activity is carried out many times. Yet, no formal, single 
definition of the term “iteration” in systems analysis will be presented here. Rather, echoing the 
spirit of its many uses, we suggest that the key facets of iteration are: (1) looping operations through 
repeated activities, and (2) a progression toward a convergence or closure.

Systems design occurs within the minds of individual developers, among developers, and 
between developers and other groups. Consequently, iterations take place cognitively, within the 
minds of developers, and socially or communicatively across individuals. Cognitive iterations 
imply repeated mental activity as a designer converges on a solution that is deemed adequate—
the perfecting of the design idea. Likewise, any object, or artifact, can be iterated during design 
while it evolves in discrete steps toward some notion of completion as recognized by the rules of 
the genre that define its completeness. As noted above, we suggest that there are two fundamental 
forms of iteration during systems analysis and design process: (1) iterative cognitive processes 
in the minds of the developers; and (2) iterations over representational artifacts that are used and 
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shared by designers and other stakeholders during the design (see Table 4.1). These representa-
tions include instances of the executable code.

To understand cognitive iteration, it is important to explore how the minds of designers work. 
This task is not unproblematic due to the intangibility and nonobservability of cognitive activity. 
Representational artifacts, however, are tangible objects representing something about the design, 
and can be identified, discussed, and tracked in a relatively straightforward manner. Below, we 
analyze theoretical views of cognitive iteration in design, and then examine how cognitive pro-
cesses are reflected in changes in representational artifacts.

COGNITIVE ITERATION IN DESIGN

In a sense, all systems analysis and design depends on what goes on in the heads of designers. It 
is a commonly held belief that this cognitive activity advances iteratively, where some forms of 
mental looping take place to guide the design. A substantiation of this simple observation, beyond a 
mere statement, demands, however, that we open ourselves to the vast cognitive science literature, 
as well as to the wide array of treatments of cognitive phenomena in psychology, design, computer 
science, and information systems research—complete with accompanying rival epistemologies 
and ontological assumptions. Rather than attempting in this chapter to establish any distinct onto-
logical stance, we broadly review what we characterize as the “rationalistic” school of cognition. 
We also address an alternative tradition as represented in critiques of artificial intelligence and 
ethnographic analyses of design. We then offer examples of these two traditions in their treatment 
of cognitive iteration in software design. The goal of this section is thus to illustrate the common 
thread of cognitive iteration that permeates all perspectives on systems design, and to highlight the 
importance of representational artifacts in iteration from an individual designer’s standpoint.

Views of Designer Cognition

The mainstream view of designer’s cognition falls squarely within what computer scientists refer 
to as the “symbol system hypothesis” of cognition (Newell and Simon, 1976). This hypothesis 
claims that cognitive activity is essentially comprised of “patterns and processes, the latter being 
capable of producing, modifying, and destroying the former. The most important property of these 
patterns is that they designate objects, processes, or other patterns, and that, when they designate 
processes, they can be interpreted” (ibid., p. 125).

Two concepts that are associated with designer’s cognition in this view are: abductive reasoning 
(Peirce, 1992) and mental models (Johnson-Laird, 1980). The reasoning process of a designer is 
described as abductive (or retroductive) inference, which is different from and should be contrasted 
with inductive and deductive inference, which are well-known modes of inference in scientific 
study (Peirce, 1992). Abduction generates a design hypothesis (a mapping between a problem 
space and a solutions space), often a “guess” by the designer in the face of an uncertain situation, 
to a given problem and then works with this hypothesis until it is no longer deemed workable—at 
which time another hypothesis is generated. Simon (1996) describes this form of cognitive activ-
ity as nested “generate-test cycles” and argues that they are fundamental to design. He conceives 
of design as problem solving, where designers engage in a “heuristic search” for alternatives and 
then choose a satisficing design to go forward. When the alternative is found not to be the proper 
course, a new cycle of heuristic search begins. During design activity, designers engage in iterative 
learning about both the problem space and the solution space (Cross, 1989; Simon, 1996).

Another critical aspect of a designer’s cognition involves the mental models that represent 
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both the problem spaces and the solutions spaces, which designers manipulate in order to connect 
the solution space with the problem space. “Mental model” here becomes a generic term that is 
used to describe (meta)concepts that organize representations of problems and solutions and their 
connections. This includes representational metamodels such as frames, schemas, causal models, 
situational models, and so on (Brewer, 1987). This notion was popularized by Johnson-Laird (1980) 
to refer to cognitive representations that are constructed as required to assist human cognition. 
Mental models are not images of problems or solutions, but can lead to such images. Specific, 
localized mental models are expected to both draw from and contribute to a global schema of 
“generic knowledge structures” within the individual that can later be expected to leverage a new 
“episodic” mental model during design (Brewer, 1987).

These ideas underpinning design cognition form the essence of the “rationalistic” tradition of 
cognition. Yet, alternatives exist that criticize some of the fundamental assumptions of rational 
models (Bruner, 1990; Hutchins, 1995; Suchman, 1987; Weick, 1979; Winograd and Flores, 
1986; and others). Any attempt to reconcile these critiques with the rationalistic tradition would 
be problematic, as rationalist theories address issues such as “meaning” in a simplistic manner, 
whereas many of the other traditions view the meaning of “meaning” as highly nuanced and 
situated (Suchman, 1994). In the rationalistic tradition “the machinery of the mind has taken 
precedence in theory building, insofar as mental representations and logical operations are taken 
as the wellspring for cognition” (Suchman, 1994, p. 188). A family of alternatives that are par-
ticularly salient to research on design cognition can be called the “situated action” perspective, 
which calls attention to “the socially constructed nature of knowledge, meaning, and designs . . . 
no objective representations of reality are possible; indeed, intelligence is not based exclusively 
on manipulating representations” (Clancey, Smoliar, and Stefik, 1994, p. 170).

The situated action view does not focus exclusively on what happens within an individual’s 
mind. Rather, it looks at the interactions between social and contextual phenomena within the 
ongoing activity of a designer (Suchman, 1987; Winograd and Flores, 1986). An example of an 
iterative cognitive activity in this tradition would be the idea of a hermeneutic circle of interpreta-
tion where the individual leverages his “pre-understanding” to understand something within its 
context and forms a new “pre-understanding” (Winograd and Flores, 1986). Each hermeneutic 
circle can be considered a cognitive iteration.

Although mainstream management and design research generally aligns with the rationalistic 
tradition, there is an increasing amount of research that emphasizes interpersonal negotiation and 
dialogue as a key to understanding design (Bucciarelli, 1994; Clark and Fujimoto, 1991). In this 
stream, the idea of cognitive iteration is not the neat, temporally ordered, and fully formed mental 
model of a design in an individual’s mind. Rather, it is a messy, partially formed object and process 
of dialogue, laden with meaning and interests and evolving through hermeneutic cycles. In the situ-
ated action view, the notion of a discrete and individual cognitive iteration loses its vividness.

To summarize, we must first become aware of the assumptions of each tradition, as each 
tradition offers an alternative view of iteration. The rationalistic tradition assumes fully formed 
and well-organized mental models that emerge and are manipulated during design, whereas the 
situated action perspective assumes partial, evolving understandings of the design as realized in 
dialogue. Either way, both these cognitive iterations share three facets:

1.	 steps or stages within the design (e.g., generate-test cycles/hermeneutic circles);
2.	 the design process as a gradual movement of the “mental” object (mental model/under-

standing); and
3.	 the design object (the representation/the text).
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The bulk of systems design research treats cognitive iteration in accordance with the rationalistic 
tradition and normally seeks to map a designer’s mental operations into a set of corresponding 
operations on the artifacts. Since the mid-1990s, however, there has been a growing amount of 
research that draws upon the situated action perspective (Bergman, King, and Lyytinen, 2002; 
Boland and Tenkasi, 1995; Cockburn, 2002; Hazzan, 2002; and others). In this alternative tradi-
tion, design is an ongoing dialogue that is always open to reinterpretation. Next we review ways 
in which the information systems literature has addressed cognitive iteration and its three aspects 
of design activity, as well as prescriptive and descriptive accounts of systems design.

Cognitive Iterations Within Design

Surprisingly, cognitive iterations as such have gone largely unaddressed in the systems design 
literature. Although the design literature draws extensively upon the systems approach (Churchman, 
1968), the mainstream of the systems design research rarely accounts for the iterating cognitive 
process inherent in design (Churchman, 1971). In contrast, systems development literature has 
focused mainly on the cognitive iterations in the form of operations associated with steps in the 
design process, and less so with the design process itself, or cognitive iterations about the design. 
Table 4.2 offers examples of each form of cognitive iteration as recognized in the literature. We 
emphasize that this is not an exhaustive list, but rather is intended as an illustration.

Cognitive Iterations of Stages in the Design Process

In the systems design tradition, cognitive activity is assumed to coincide with formal stages of the 
design—the moments at which a given aspect of the software crystallizes and becomes “frozen.” 
The most common conceptual iteration observed in systems design is that of the step, stage, or 
phase. Stages are iterated as they are repeated during the design. Such iterations have tradition-
ally been considered inevitable, necessary evils (Davis, 1974; Royce, 1970), but are now more 
commonly thought to enhance system quality (Basili and Turner, 1975; Beck, 2002; Boehm, 
1981; Brooks, 1995; Cockburn, 2002; Floyd, 1984; Keen and Scott Morton, 1978; Larman and 
Basili, 2003; McCracken and Jackson, 1982). Such stages can be formal, such as the requirements 
determination phase that results in “frozen” requirements (Davis, 1982), or they can be fairly 
indeterminate, such as “time-boxed” steps in agile methods (Auer, Meade, and Reeves, 2003; 
Beck, 2002; Beynon-Davies, Tudhope, and Mackay, 1999). Stages, phases, rounds, or iterations 
of the process are prescribed by a methodology but are not directly related to the status of the 
design or the code (Beck, 2002; Boehm, 1988; Kruchten, 2000; Larman, 2004). The rationalistic 
tradition within systems design thus tends to equate cognitive iterations with the formal procedural 
iterations.

Cognitive Iterations About the Design Process

Cognitive iterations associated with system development are not necessarily limited to those within 
the process, but can also relate to the designer’s conceptions about the process itself. If we follow 
the idea that a method is in itself a formal design model, this model can iterate during the design 
process much the same as conceptualizations of the design object itself. This idea is prominent in 
the concept of method engineering (Brinkkemper, 1996; Rossi et al., 2004; Tolvanen and Lyytinen, 
1993). Method-engineering advocates claim that formal methodologies cannot specify a priori 
all design tasks to be completed, as problems and solutions spaces change. Therefore designers 
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must be reflective (Checkland, 1981; Hazzan, 2002). Through this reflection, designers learn and 
continuously revise their practices and iterate over the design objects and design processes they 
will engage in (Rossi et al., 2004). During design activity, designers thus learn by iterating over 
their cognitive models of the method (second loop learning), and they can also capture the ratio-
nale for these iterations in order to facilitate the continued evolution of methods and associated 
mental models (Rossi et al., 2004).

Cognitive Iterations of the Design

The situated action tradition frequently ventures beyond stages and models and draws attention to 
other forms of cognitive iteration. For example, systems design has been likened to a hermeneutic 
circle (Boland and Day, 1989), where a designer iteratively compares an artifact with its context 
to understand its meaning. Checkland (1981) recommends specific representations, such as rich 
pictures and holons, to guide a system developer in iterative hermeneutic cycles between the 
representations, personal judgments, and understandings of reality that will progressively refine 
his underlying design conception. To understand a given process, the analyst iterates cognitively 
between perceptions of the social world external to him, his internal ideas, various representations, 
and the methodology of the analysis (Checkland and Scholes, 1999).

Researchers have also likened forms of systems development to dialectic cycles (Churchman, 
1971). Such cycles are evident in participatory approaches to design that encourage dialogues 
between system developers and the user community (Floyd et al., 1989; Mumford, 2003). These 
dialogues can result in a series of explicit agreements concerning system functionality, the antici-
pated environment, or appropriate methodologies (Mumford, 2003). They also typically involve 
iterations of cooperation and conflict that are intended to improve user-related outcomes such as 
user satisfaction or system use.

Other approaches consistent with the situated action perspective offer radically alternative 
iterations. For example, the early PIOCO methodology (Iivari and Koskela, 1987) goes beyond 
sequential stages and formulates iterative problem-solving processes within multiple levels of 
abstraction. Rather than freezing portions of the design into predetermined linear phases, devel-
opment follows a nonlinear iterative (recursive) progression that is explicitly allowed throughout 
the design. The design can be frozen at specific levels of abstraction before tackling subsequent, 
lower levels of abstraction.

In all of these examples, the cognitive iteration does not stand on its own, but is intimately 
involved with the designer’s interactions with representational artifacts, the social context, and 
managerial concerns. Cognitive iterations are not discrete, fully formed views of the information 
system and its design, but rather form incomplete perspectives about the design object and the 
design process. They instantiate representations of the system on three levels: technical (computer 
system, such as code), symbolic (data and inferences, such as data models), and the organizational 
level (tasks supported, such as anticipated sociotechnical work scenarios) (Iivari and Koskela, 
1987; Lyytinen, 1987).

Little empirical research has been conducted on software developers’ cognition (Boland and 
Day, 1989; Curtis, Krasner, and Iscoe, 1988; Jeffries et al., 1981). Most studies observe cognitive 
challenges related to designs that demand iteration, but do not test or compare iterative versus 
noniterative cognitive practices. Exceptions do exist, however. For example, an early study com-
pared the traditional unidirectional flow of problem information from a user to a developer during 
requirements definition with an iterative dialogue, where both the user and developer prepared 
their suggestions and offered feedback in a “dance.” The iterative method generated greater mu-
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tual understanding, better design quality, and enhanced system implementability (Boland, 1978). 
In another study, researchers found that novice developers benefited from sequential processes 
in database design, whereas experts leveraged iterative behaviors to improve design outcomes 
(Prietula and March, 1991).

ITERATIONS OVER REPRESENTATIONAL ARTIFACTS

Whatever the content of a designer’s cognitive activity, it relies on representations that act as tools 
by which designers extend their cognition (Bucciarelli, 1994; Hutchins, 1995; Simon, 1996). A 
representation is a “way in which a human thought process can be amplified” (Churchman, 1968, 
p. 61). Designers represent their designs, the design process, and other associated information 
using symbolic and physical artifacts. In the making of these artifacts, in manipulating and navi-
gating through them, and in reflecting on artifacts, design ideas crystallize and change, or new 
ideas emerge. Representational artifacts can take the form of documentation such as data models 
or system requirements documents, or the executable code itself (code, components, database 
schemata, etc). Table 4.3 describes a number of iterating representational artifacts identified in the 
literature. Again, this is intended as an illustration of the wide range of representational iterations 
that are prescribed in methodologies.

To appreciate the nature and role of representational artifacts in systems design, it is important 
to view an information system as a dynamic entity (Orlikowski and Iacono, 2001). Systems evolve, 
get revised, and behave differently in different contexts. In fact, there is no single entity or thing 
that is the system. Rather the system is a shared, ambiguous, and ambivalent conception about 
a slice of reality that can only be more or less accurately approximated through representations 
(Lyytinen, 1987). Yet throughout the process, individuals often discuss the information system as 
if it were a single, discrete entity, although all individuals have only partial views (Turner, 1987). 
Early in the design process, the information system may be little more than an idea invented by 
a handful of people whose only tangible artifact is a vague requirements memo or note. Later in 
the process, the system may become represented by lines of incomplete code, dozens of use cases, 
and a great number of varying rationales of the system’s utility.

In the following sections we analyze how representational artifacts that are deemed pivotal in 
the information systems development and software engineering literature iterate. There are two 
broad categories of these artifacts: the descriptive documents associated with the design object 
and the executable code. We treat them differently because ultimately only the code inscribes new 
behaviors in the target system—the technical and sociotechnical system. The system descriptions 
are needed to make the code inscribe behaviors that are intended, acceptable, and correct. We then 
address the idea of “iterative development” as reflected in the ways in which artifacts iterate, as 
well as what we know about the impacts of “iterative development” on design outcomes.

Iterating Documents

Early representations of the system center on descriptions of system requirements. Over the course 
of the design, these representations change regularly and often evolve into other representations, 
such as “as built” software documentation. Because of this need for connecting requirements with 
downstream documentation and ultimately with the executable code, no development methodol-
ogy can overlook iteration across documents entirely, although some, such as XP (Beck, 2002), 
aspire to remove a majority of documentation from the critical design path.

Traditional system development life-cycle and “heavy-weight” methodologies are thought to 
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focus on documentation and its iterations. They encourage “freezing” documentation upstream in 
order to move in a disciplined manner to the next steps in the design. This conceptualization is not, 
however, always the case, as most major methodologies allow for iteration of upstream documents 
at least to some extent (Boehm, 1981, 1988; Humphrey, 1989; Kruchten, 2000).

The waterfall model (Royce, 1970) is the best-known life-cycle methodology and is often char-
acterized as top-down, unidirectional, and noniterative. Contrary to this claim, even in its earliest 
manifestation Royce suggested that unwanted changes and associated iterations are inevitable, and 
he recommended a number of practices to address such problems, including piloting any sizable 
software project with a “preliminary program design” (Royce, 1970, p. 331). This concept was later 
popularized by Brooks when he stressed “plan to throw one away; you will, anyhow” (Brooks, 1995, 
p. 116). Royce also suggested iterative maintenance of design documentation. He understood that 
requirements change as the developer learns, and therefore the requirements should evolve through a 
series of at least five classes of documents to the final documentation of the design “as built.” Updates 
to design documentation occur for two primary reasons: to guide or to track development.

The extant literature addresses various forms of iterations related to upstream system representations 
—such as requirements determinations (Davis, 1982), data models (Hirschheim, Klein, and Lyyt-
inen, 1995), and the wide array of technical and social documentations associated with formal 
methodologies (Boehm, 1981, 1988; Davis, 1974; Humphrey, 1989; Kruchten, 2000; Mumford, 
2003; and others). Although most of the literature addresses changing documents throughout the 
design, the value of these changes is not elaborated beyond guiding and tracking. Even the more 
nuanced views of documentation that treat its creation as problematic and argue its content to 
be flawed (Parnas and Clements, 1986) have made no distinction between the value and cost of 
iterations across representations. There are some exceptions to this, however. For example, the 
“inquiry cycle model” (Potts, Takahashi, and Anton, 1994) describes iterative requirements refine-
ment where stakeholders define, challenge, and change requirements. Using requirement goals 
to drive such practice is expected to be efficient, since many original goals can be eliminated, 
refined, or consolidated before entering the design step (Anton, 1996).

Iterating Software Code

The code evolves through multiple instantiations in many development approaches including 
“throw-away” prototypes (Baskerville and Stage, 1996), prototypes that evolve into a final system, 
or maintenance of different versions of a system. The common usage of “iterative development” 
normally refers to software design that proceeds through “self-contained mini-projects” where 
each produces partially complete software (Larman, 2004). This has traditionally been referred 
to as evolutionary prototyping (Alavi, 1984; Beynon-Davies et al., 1999; Floyd, 1984). Such 
“iterative development” practices emerged soon after waterfall was made the orthodox model. 
The idea of “stepwise refinement” involved a blunt, top-down design of the system, then a phased 
decomposition and modular improvement of the code—largely to increase system performance 
(Wirth, 1971). Stepwise refinement was criticized for requiring “the problem and solution to be well 
understood,” and not taking into consideration that “design flaws often do not show up until the 
implementation is well under way so that correcting the problems can require major effort” (Basili 
and Turner, 1975, p. 390). To address these issues, Basili and Turner recommended an “iterative 
enhancement,” where designers start small and simple, by coding a “skeletal sub-problem of the 
project.” Then developers incrementally add functionality by iteratively extending and modifying 
the code, using a project control list as a guide, until all items on the list have been addressed. Each 
iteration involves design, implementation (coding and debugging), and analysis of the software.
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This idea of iterative enhancement forms the foundation of evolutionary prototyping and 
recent agile methods. Agile methods are based on the assumption that design communication 
is necessarily imperfect (Cockburn, 2002), and that software design is a social activity among 
developers and users. A popular agile methodology—extreme programming (XP)—promotes a 
variety of iterative practices such as pair programming (cognitive iteration during each design 
step through dialogue), test-first development (generating test information that guides subsequent 
iteration), and refactoring (iterating the software artifact during each cycle) (Beck, 2002). The 
structure of XP is almost identical to the early evolutionary design, where limited functionality is 
first developed, and then incrementally expanded. However, XP can take advantage of a number 
of software tools that were not available to early software developers. Powerful toolsets are now 
available that enable unit testing, efficient refactoring, and immediate feedback, while object-
oriented environments allow for modular assembly of significant portions of the system. Also, 
process innovations such as testing-first, time-boxing, collocation, story cards, pair programming, 
shared single code base, and daily deployment mitigate the communication problems found in 
earlier evolutionary processes.

The Promise of “Iterative Development”

The justification of evolutionary prototyping, or more commonly “iterative development,” centers 
on trial-and-error learning about both the problem and solution. Users and developers do not know 
what they need until they see something—similar to Weick’s (1979) illustration of organizational 
sensemaking: “how can I know what I think till I see what I say?” Thus generating prototypes 
assists communication better than traditional abstract upstream documentation and thereby sup-
ports mutual learning (Alavi, 1984; Basili and Turner, 1975; Beck, 2002; Boehm, 1981; Brooks, 
1995; Cockburn, 2002; Floyd, 1984; Keen and Scott Morton, 1978; Larman and Basili, 2003; 
McCracken and Jackson, 1982; and others). We now review some of the anticipated outcomes 
associated with iterative development.

Anticipated benefits of evolutionary, or “iterative development”, are many. By “growing” the 
design, software can be developed more quickly (Brooks, 1987). Beyond speed, evolutionary 
development enables a “more realistic validation of user requirements,” the surfacing of “sec-
ond-order impacts,” and a greater possibility of comparing alternatives (Boehm, 1981, p. 656). 
Prototyping demonstrates technical feasibility, determines efficiency of part of the system, aids 
in design/specification communication, and structures implementation decisions (Floyd, 1984). 
Prototyping is thought to mitigate requirements uncertainty (Davis, 1982), aid in innovation, and 
increase participation (Hardgrave, Wilson, and Eastman, 1999), reduce project risk (Boehm, 1988; 
Lyytinen, Mathiassen, and Ropponen, 1998; Mathiassen, Seewaldt, and Stage, 1995), and lead to 
more successful outcomes (Larman and Basili, 2003). Because developers generate code rather 
than plan and document, they are expected to be more productive (Basili and Turner, 1975; Beck, 
2002; Larman, 2004). Therefore, projects using evolutionary prototyping can be expected to cost 
less (Basili and Turner, 1975; Beck, 2002; Cockburn, 2002; Larman and Basili, 2003).

A problem often associated with strict evolutionary development, however, is the lack of 
maintaining “iterative” process plans. Starting with a poor initial prototype could turn users away; 
prototyping can contribute to a short-term, myopic focus, and “developing a suboptimal system” 
can necessitate rework in later phases (Boehm, 1981). Exhaustive design documentation will still 
be required even if prototyping forms the primary process (Humphrey, 1989). Also, the output 
of evolutionary development often resembles unmanageable “spaghetti code” that is difficult to 
maintain and integrate. These are similar to the “code and fix” problems that waterfall was originally 
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intended to correct (Boehm, 1988). Many problems associated with evolutionary development 
include: “ad-hoc requirements management; ambiguous and imprecise communication; brittle 
architectures; overwhelming complexity; undetected inconsistencies in requirements, designs, and 
implementation; insufficient testing; subjective assessment of project status; failure to attack risk; 
uncontrolled change propagation; insufficient automation” (Kruchten, 2000, ch. 1).

Not surprisingly, many caution that evolutionary development is not suited to every situation, 
as the idea of continuous iteration makes unrealistic assumptions. Evolutionary methods assume 
that projects can be structured according to short-term iterations, face-to-face interaction is always 
tenable and superior to formal upstream documentation, and the cost of change remains constant 
over the project (Turk, France, and Rumpe, 2005). Issues such as scaling, criticality, and devel-
oper talent will often require hybrid methodologies—or a combination of evolutionary prototypes 
with formal and control-oriented methods (Boehm, 2002; Cockburn, 2002; Lindvall et al., 2002). 
Also, evolutionary development demands other complementary assets like smart designers or the 
availability of enlightened users in order to succeed (Beck, 2002; Boehm, 1981).

Empirical Impacts of “Iterative Development”

Empirical research on “iterative development” is as scarce as the prescriptive research is plentiful 
(Gordon and Biemen, 1995; Lindvall et al., 2002; Wynekoop and Russo, 1997). The empirical 
research that does exist focuses on the effects of prototyping on project success (e.g., Alavi, 1984; 
Boehm, Gray, and Seewaldt, 1984; and others), while neglecting the impact and role of other 
iterating representations. Nevertheless, in what follows, we assess the state of empirical research 
on iterations over representational artifacts.

Representational artifacts include the documents, data models, and other representations of the 
software, including artifacts such as user-interface mock-ups and “throw-away” prototypes. These 
representations are addressed quite extensively in the prescriptive literature, but the iteration of 
these representations and the effects of those iterations on design outcomes are notably absent. 
The primary exception is the research on “throw-away” prototypes. Although many researchers 
distinguish between prototypes that occur at different stages and are used for different purposes 
(Beynon-Davies et al., 1999; Floyd, 1984; Janson and Smith, 1985), the empirical literature does 
not underscore distinctions between these types of prototypes and their outcomes, and when they 
see a distinction, there is no significant difference in the outcomes (Gordon and Biemen, 1993, 
1995).

As indicated earlier, the notion most commonly associated with “iterative development” is 
evolutionary prototyping. Table 4.4 summarizes the expected impacts of evolutionary prototyp-
ing and compares them with empirical findings. It is important to note that a good number of 
researchers have found empirical evidence to be inconclusive, and these data are not reported in 
our review. Furthermore, many expectations highlight the drawbacks of the evolutionary method, 
but these criticisms focus on design outcomes, which are addressed below.

The fundamental reason Basili and Turner advocated iterative enhancement is that problems and 
solutions are not well understood, and even if they were, “it is difficult to achieve a good design 
for a new system on a first try” (1975, p. 390). Subsequent empirical research found prototyping 
to be an excellent method for users and developers to learn about the requirements together (Alavi, 
1984; Boehm, Gray, and Seewaldt, 1984; Naumann and Jenkins, 1982; Necco, Gordon, and Tsai, 
1987). Prototyping has been found to support communication and problem solving between users 
and developers (Deephouse et al., 1995; Mahmood, 1987), and has led to greater user involvement 
(Alavi, 1984; Gordon and Bieman, 1995; Naumann and Jenkins, 1982). Improved user participa-
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tion is often credited with better user satisfaction (Naumann and Jenkins, 1982; Necco, Gordon, 
and Tsai, 1987), designer satisfaction (Mahmood, 1987), ease of use (Boehm, Gray, and Seewaldt, 
1984; Gordon and Bieman, 1993), and greater use of the system (Alavi, 1984; Mahmood, 1987). 
Research on the effects of prototyping on system performance is generally mixed (Gordon and 
Bieman, 1993). Some found prototyping to be positively related to higher system performance 
(Alavi, 1984; Larman, 2004), but others found that prototyping might create less robust, less 
functional systems, with potentially less coherent designs (Boehm, Gray, and Seewaldt, 1984), 
and may call for “negotiable” quality requirements (Baskerville and Pries-Heje, 2004).

While Basili and Turner (1975) advocate iterative enhancement, they indicate that software 
created through evolutionary prototypes can require less “time and effort,” and the “development 
of a final product which is easily modified is a by-product of the iterative way in which the product 
is developed” (1975, p. 395). A large number of subsequent studies indicate that prototyping can 
shorten lead times for projects and/or require less effort, typically measured by fewer man-hours 
(Baskerville and Pries-Heje, 2004; Boehm, Gray, and Seewaldt, 1984; Gordon and Bieman, 1995; 
Naumann and Jenkins, 1982; Necco, Gordon, and Tsai, 1987; Subramanian and Zarnich, 1996). A 
number of studies also support the claim that evolutionary prototyping results in more maintain-
able code (Boehm, Gray, and Seewaldt, 1984; Gordon and Bieman, 1993).

In most empirical studies, iteration is treated as an independent variable that affects outcomes. 
Additional moderators are sometimes introduced, but not in a systematic manner. For example, 
prototyping must be combined with other factors such as powerful development tools (Alavi, 1984; 
Naumann and Jenkins, 1982), a standardized architecture (Baskerville and Pries-Heje, 2004), 
greater developer expertise (Gordon and Bieman, 1995), a complementary culture (Beynon-Davies, 
Mackay, and Tudhope, 2000; Lindvall et al., 2002), and “low technology” artifacts and processes 
for scheduling and monitoring (Beynon-Davies, Mackay, and Tudhope, 2000). Also, if users are not 
involved, prototype-based outcomes can suffer (Lichter, Schneider-Hufschmidt, and Zullighoven, 
1994). Prototyping can also be seen as a dependent variable. For example, researchers find that 
prototyping may pose challenges for management and planning (Alavi, 1984; Boehm, Gray, and 
Seewaldt, 1984; Mahmood, 1987).

In recent years there has been a dearth of rigorous research on the effects of prototyping on 
systems development. Most of the empirical literature on the impacts of agile methods is anecdotal 
(Lindvall et al., 2002). Although past studies have typically compared prototype-based processes 
with specification or plan-based processes, current empirical research will likely suggest com-
binations of iterative and specification-based processes (e.g., Mathiassen, Seewaldt, and Stage, 
1995) or compare variations in agile practices. When pursuing either of these research avenues, it 
would make sense to adopt a more granular and refined view of iteration and define the dependent 
variables carefully.

DISCUSSION

“Iterative development” has been both advocated and contested as a systems analysis and design 
principle. Yet it has remained a fundamental building block of system analysis and design meth-
odologies. In this chapter, we have consistently enclosed the term in quotation marks because 
literally all systems development is iterative. Both cognitive and, consequently, representational 
iterations are essential to every design practice. This begs the question: What is the difference, then, 
between “iterative” practices of today, and the traditional “noniterative” practices? The answer is 
not the presence or absence of iteration, as both types exhibit iteration.

One explanation of the difference can be the way in which the two types approach iteration. 
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Both modern and traditional practices focus on iteration as reactive fixes or improvements based 
on new information, or uncovered problems. Many modern methods, however, also anticipate 
the need for and inevitability of new information, and proactively seek it. Thus, the difference is 
not the presence of iteration, but, rather, the timing and visibility of it. With earlier visibility of 
iteration needs, designers invite user input and thus relinquish a certain amount of control over 
iteration decisions. Because this visibility is staged earlier, its granularity with regard to founda-
tional details and assumptions of the system development is also greater. Fundamentally, “iterative 
development” is not necessarily more iterative. But it is likely to be more open, and the control 
over iterations is shared and at a much more detailed level.

Consider the code as an iterating artifact, for example. All application software iterates over 
its life even if its design methodology is the systems development life-cycle model (Davis, 1974). 
Each version of a software system can be considered an iteration. As bugs are fixed or enhance-
ments added to code—even if consistent with the linear life-cycle method—any new instantiation 
of code can be considered an iteration. When all or some portions of the code are compiled, the 
result is an iteration of compiled code. Anytime a designer replaces or adds to any part of working 
code, he has iterated over that code.

In the traditional life-cycle method, however, the user is not highly involved beyond listing 
requirements. Management is not aware of each subsequent iteration, but sees only the code that 
is presented at key milestones. The bricolage of everyday workarounds, failures, and changes is 
neatly hidden from everyone except the designer himself—as are micro-level assumptions and 
decisions that can have disproportionately large impacts on path-dependent future designs. As sys-
tems development has become more “iterative,” the veil hiding this practice has been progressively 
lifted. Prototyping invited other developers, users, and managers into discussions at a more granular 
level of detail sooner during development. When participating in this activity, those parties adopted 
more control over the process. Risk analysis (Boehm, 1988; Lyytinen, Mathiassen, and Ropponen, 
1998) that focuses on continued risk mitigation—rather than overly detailed requirements that 
draw no real distinction of risks—exposes the key requirements of design to scrutiny outside of 
developers. Pair programming (Beck, 2002) opens ongoing moment-by-moment deliberations 
of an individual developer to observation and demands a dialogue with a fellow developer. This 
observation indicates that the key contingency for distinguishing the level of iteration between 
development practices is not whether one engages in evolutionary prototyping or not. Observations 
such as the following indicate that a focus on iteration as such may be misplaced:

•	 user involvement is a more important determinant of project outcomes than presence of 
iterative development (Lichter, Schneider-Hufschmidt, and Zullighoven, 1994);

•	 the success of any development, iterative or not, depends more on developer experience than 
anything else (Boehm, 2002); and

•	 for “iterative development” to succeed, the complementary practices such as co-location, 
pair programming, and so on are essential (Beck, 2002).

Therefore, it is not the presence of iteration that primarily determines the outcomes of systems 
analysis and design activity. Rather, these outcomes are determined by the activities that the types 
and forms of iterations can enable and constrain. The black box of iteration should be opened 
to understand structures and affordances of prescribed iterations and complementary processes, 
and their effect on design process and its outcomes. Rather than asking whether an organization 
should adopt “iterative development,” it is more applicable for organizations to ask what level of 
granularity, visibility, and control over changes and decisions about design objects and processes 
is appropriate at different times, and for different purposes of the design.
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Implications for Practice

We have indicated that the essential difference between what is widely considered to be “iterative 
development” and traditional software development is the audience for design activity. “Iterative 
development” allows visibility to other developers or some portion of the managerial and user 
community earlier in the process, and at a more granular level. With such activity, developers are 
also relinquishing a degree of control. Because of the dual nature of software code—acting as a 
representational artifact of the system as well as a fundamental physical structure within the task 
system—analysis of iterations solely on the basis of the presence of evolutionary prototyping 
may be a distraction from the issues that drive better results. The iterative processes by which 
key concerns arise throughout the development process are essential for understanding success. 
These processes can be facilitated by evolutionary prototyping, but also by the creative use of other 
representational artifacts, generative language and dialogue, or other collaborative mechanisms. 
Rather than attempting to implement new methodologies blindly, software developers would be 
better served in first determining who needs design input, at what level of granularity, and at what 
stage of the design process.

Implications for Research

In systems analysis and design literature, cognitive iterations are addressed (usually implicitly) 
through the iterative treatment of representational artifacts. The perspectives and meanings that 
designers ascribe to artifacts are rarely tackled. Instead the technical artifact itself is the central 
concern. Typically, the actual cognitive practices within development are not dealt with, but 
rather the formal steps and stages of the methodology as reflected in representational outcomes 
are treated at length. Genres of representations are typically advocated and designed to enable 
communication and human interaction at specific steps and junction points, and such artifacts are 
expected to change iteratively. This communication is not always seen as unproblematic, and the 
nature, content, and scope of these representations is seldom fully explicated in how they support 
the cognitive activities of design groups or their iterations (with some exceptions, of course; e.g., 
Checkland, 1981; Hirschheim, Klein, and Lyytinen, 1995).

This review of the literature related to iteration points to two broad areas of future research in 
systems analysis and design. First, cognitive iterations of software developers and other stakehold-
ers need to be better understood. Perspectives of individuals associated with the design process do 
impact the design process, and understanding the evolution of these perspectives is imperative to 
improving outcomes. Second, future research should involve opening the black box of iteration over 
code and other representational artifacts to understand outcomes associated with particular design 
practices. By opening this black box, we encourage researchers not to treat the term “iteration” 
as an undifferentiated construct, but rather to look at the degrees of visibility, granularity, timing, 
and control associated with evolutionary changes of the code, various forms of documentation, 
and the perspectives of the various stakeholders.

CONCLUSION

The contribution of this chapter is to illustrate the multidimensional nature of the concept of 
iteration. Iteration is often characterized in the literature as a straightforward concept: either 
a development process is iterative or it is not. We have shown that this characterization is too 
simplistic, as all development practices contain significant levels of iteration. We also identified 
two fundamental dimensions of iteration: cognitive and representational. Cognitive processes of 
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developers and others involved in a design are necessarily iterative, but this can mean different 
things depending on whether the rationalistic tradition or the situated action perspective of human 
cognition is adopted. In addition, cognitive iterations involve iterative engagement with represen-
tations acting as both extensions to cognition and mediation between individuals.

We identify two primary forms of representation: the descriptive documents associated with 
analysis and design activity, and the executable code itself. Although many representational 
artifacts for both types are prescribed by advocates of particular methodologies, the empirical 
literature is limited solely to examining iterations over the software code as evolutionary proto-
typing. Furthermore, recent “iterative development” identifies entirely with the centrality of the 
iterations associated with the code itself. In this chapter we provide a starting point for unpack-
ing the notion of iteration to expand the discussion beyond iterating code to other artifacts and 
associated cognitive processes.
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Chapter 5

A FRAMEWORK FOR IDENTIFYING THE 
DRIVERS OF Information Systems 

Development METHOD EMERGENCE

Sabine Madsen and Karlheinz Kautz

Abstract: This chapter explores how unique and locally situated information systems development (ISD) 
methods unfold over time and why they emerge differently. The purpose is to identify the underlying pro-
cess form and drivers of ISD method emergence. Based on a synthesis of literature about contextualism, 
structuration theory, and change processes, a theoretical framework is developed and used to perform 
a comparative analysis of two longitudinal case studies of method emergence in a Multimedia project 
and a Web project. The framework facilitates progression from narrative accounts, over systematic 
comparison, to generalization of findings to theory, thereby allowing for a movement from surface 
description to deep explanation. The analysis shows that while the two cases are very similar in some 
regards they can in fact be seen as two different sequences of change (dialectical versus teleological) 
driven by two different generative motors (conflict resolution versus social construction). We suggest 
that the demonstrated framework is relevant to both researchers and practitioners in reading a situa-
tion before project initiation, during development, and after project completion and in identifying and 
leveraging the dynamics inherent in or relevant to a particular situation and change process.

Keywords: ISD Methods, Emergence, Framework

INTRODUCTION

In the information systems development (ISD) literature, the concept of method is often used to 
refer to an orderly, predictable, and universally applicable process (Truex, Baskerville, and Travis, 
2000, p. 54). Lyytinen (1987) defines a method as an organized collection of concepts, beliefs, 
values, and normative principles supported by material resources, while Andersen and colleagues 
(1990) and Mathiassen (1998) declare that a method consists of prescriptions for performing a 
certain type of work process with the help of principles, techniques, and computer-based tools 
and is characterized by its application area and its perspective—that is, a set of assumptions on 
the nature of the work processes and their environment. In line with these definitions, Fitzgerald, 
Russo, and Stolterman (2002, p. 13) put forward the term “formalized method” and define it as 
any formally documented in-house or commercially available method.

Most contributions within the field of ISD focus on formalized development methods: the 
prescriptive literature emphasizes how they should be used, while empirically grounded writings 
focus on how they actually are used. A number of method authors recommend that the development 
process should be tailored to fit the contingencies of the particular situation (Avison et al., 1998; 
Jacobsen, Booch, and Rumbaugh, 1999). In line with this, empirical studies show that in practice 
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information systems (IS) developers rarely adopt methods in their entirety; instead they adapt and 
apply method elements in a pragmatic way (see, e.g., Bansler and Bødker, 1993; Fitzgerald, 1997, 
1998; Fitzgerald, Russo, and Stolterman, 2002; Madsen and Kautz, 2002; Stolterman, 1991, 1992, 
1994). Others argue that the formalized method is just one element among many that influence 
and shape the actual unfolding development process and situated use of methods—which has been 
referred to as the unique method (Truex, Baskerville, and Travis, 2000), the local methodology 
(Vidgen, 2002; Vidgen et al., 2002), or the method-in-action (Fitzgerald, Russo, and Stolterman, 
2002). However, so far, little theoretical and empirical research has addressed the practical and 
temporal details of how and why the unique and local method emerges. To help overcome this 
deficiency, we have previously investigated and meticulously mapped the relationship between 
what influences and shapes the method and how it consequently emerges in a Multimedia project 
(Kautz, 2004) and a Web project (Madsen, Kautz, and Vidgen, 2006). In this chapter, we draw 
on and develop the research further and more conceptually by exploring how unique and locally 
situated ISD methods unfold over time and why they emerge differently. The purpose is to identify 
the underlying sequence and drivers of change in ISD method emergence.

As our object of study we focus on the emergent method, which we define as the unfolding 
development process and the activities and the applied method elements that comprise this process. 
This definition addresses the development process as a sequence of activities (Sambamurthy and 
Kirsch, 2000). The choice of the concepts of emergent method, when we describe and analyze 
concrete cases, and method emergence, when we relate to the phenomenon on a general level, is 
inspired by Pettigrew (1987). Studying change processes in firms, he argues that from a holistic 
and systemic perspective the language of process is characterized by verb forms such as emerg-
ing, elaborating, mobilizing, changing, dissolving, and transforming, whereas at the level of the 
individual actor the emphasis is on enacting, acting, reacting, interacting, and adapting (Pettigrew, 
1987). While we take the individual actor into account, we are primarily interested in the unfold-
ing of the development process as an outcome of a complex interplay of enacting and interacting 
actors and structures.

In the next sections, we describe our research approach and develop a theoretical framework 
for understanding method emergence in practice. Then we describe the emergent methods in two 
longitudinal case studies of a Multimedia project and a Web project. The chapter systematically 
compares the elements and interactions that contributed to the method emergence in the two cases 
with the aim of explaining why they unfolded differently. The results of the cross-case comparison 
are discussed in relation to process theory to identify the underlying process forms and drivers. 
The chapter ends with a summary of the main conclusions.

RESEARCH APPROACH

For the research presented in this chapter we draw on two empirical case studies of ISD projects 
in practice. The purpose of the first project was to develop a multimedia information system 
(MMIS) to spread knowledge about software process improvement (SPI) and quality manage-
ment to information technology (IT) professionals. The project was undertaken for the European 
Union (EU) based on a joint bid by two software organizations: an IT consultancy and an academic 
organization. The Multimedia project lasted twenty-two months. The second project concerned 
the development of a Web-based information system and was performed in-house in a small to 
medium-sized market research company. The Web project was conducted in contracted collabora-
tion with academic researchers but for the benefit of the market research department. The purpose 
was to improve the department’s internal work practices and support its online sales to customers 
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by creating a research data repository (RDR) that would contain details of companies and produc-
tion volumes in the drinks industry. The Web project lasted twenty-four months. The two cases 
have been selected for cross-case comparison because of their likeness as “the juxtaposition of 
seemingly similar cases by a researcher looking for differences can help break simplistic frames” 
(Eisenhardt, 1989, p. 541).

The roles and length of stay in the field have varied for the authors of this chapter. In the Mul-
timedia project, one author was involved in the project as an action researcher throughout the 
twenty-two-month time period. This author participated on the development team as the overall 
project manager and documented the development process in several ways. Minutes were taken 
from all meetings and shared with all involved. In addition to product and process documentation, 
data were collected in the form of the researcher’s personal diary as well as statements from e-mail 
and informal conversations. Finally, the project contract, the official project progress reports, and 
the final project report were available for this study. In the Web project, one author followed the 
RDR project closely during the two-year time period. A variety of documents such as the original 
project proposal, minutes of quarterly steering committee and monthly project team meetings, 
company documents, as well as project reports and deliverables were collected. Furthermore, the 
author participated actively in the project as an “action case” (Braa and Vidgen, 1999) or “involved” 
researcher (Walsham, 1995) for six months, contributing primarily to the requirements analysis 
activity. During these six months, as many details as possible were recorded in the researcher’s 
personal diary. In addition, the study draws on seven semistructured interviews with employees 
of the case organization, the development team members, and the involved researcher. The in-
terviews were conducted by the other chapter author acting in the role of an “outside observer” 
(Walsham, 1995). Individual case study accounts of both the Multimedia and Web cases have 
previously been peer-reviewed and published (Kautz, 2004; Madsen, Kautz, and Vidgen, 2006). 
These earlier published readings as well as unpublished write-ups have been included as relevant 
data material for this chapter, where our purpose, in line with Eisenhardt (1989), is to continue 
the work of theorizing from case study research by looking at and beyond the individual studies 
to identify patterns across the two cases.

In keeping with the research topic and interpretive approach, our data analysis and understanding 
of method emergence has come about through an iterative process of interpretation, comparison, 
and interlacing of prior research and empirical data. The framework presented below has been 
modified and refined over time according to the lessons learned from its use as a theoretical lens 
for understanding emerging change processes in practice (see, e.g., Kautz and Nielsen, 2004; 
Madsen, 2004; Madsen, Kautz, and Vidgen, 2005, 2006). For this chapter all data material have 
been reread and analyzed anew with an eye to the differences and similarities between the two 
cases, and single-case summary and cross-case comparison tables have been outlined. This chapter 
presents the findings relevant for understanding how and why the methods emerged differently 
in the Multimedia and Web cases.

THE THEORETICAL FRAMEWORK

The ISD literature reveals a lack of cumulative frameworks that integrate the theoretical and 
empirical findings from the many existing studies about ISD and ISD methods in practice. No-
table exceptions are: the NIMSAD framework, which is based on both theory and practice and 
can be used to select and evaluate primarily formalized methods (Jayaratna, 1994); the social 
action model of situated information systems design derived from a case study of a practical de-
sign process (Gasson, 1999); an integrative framework of the information systems development 
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process developed from a literature study (Sambamurthy and Kirsch, 2000); and the method-in-
action framework that incorporates past and contemporary thinking and empirical findings about 
ISD methods into one conceptual frame (Fitzgerald, Russo, and Stolterman, 2002). Common to 
these frameworks is that they stress the importance of understanding the context, the formalized 
method(s), the developers’ preconceptions and actions, and their interactions with other stakehold-
ers, as well as the influence that these concepts have on the ISD process. Our work builds on the 
insight provided by these frameworks and models in that we draw on similar concepts and share 
similar assumptions about their relationship to the emergent method. However, our framework 
extends the line of thinking through a clear focus on the temporal dimension of the development 
process, and the emergent method is conceptualized as a sequence of activities that unfolds over 
time. To explain why emergent methods unfold differently, we draw on theoretical ideas as put 
forward in Pettigrew’s contextualism (1985, 1987), and Giddens’s structuration theory (1984), 
and subsequently synthesized by Walsham (1993) as well as Van de Ven and Poole’s (1995) four 
process theories that specify four different process forms and drivers.

The framework constitutes an organizing structure for providing: first, a narrative account of 
how the emergent method unfolded in the individual cases; second, a systematic cross-case com-
parison to explain why the methods emerged differently; and third, a generalization of analysis 
results to process theory.

The object of study is the emergent method, which is defined as the unfolding development 
process and the activities, and the applied method elements that constitute this process. The narrative 
account of the emergent method describes what happened over time, because an event sequence 
with a clear beginning, middle, and end is the core of narrative structure (Pentland, 1999). How-
ever, the event sequence is only the first important step toward understanding why this particular 
pattern of activities occurred (Pentland, 1999). It is also necessary to focus on influential actors 
(their roles, perceptions, social relations, and demographics), power, culture, and broader context 
to generate meaningful explanations (Pentland, 1999). Thus, to explain why the processes unfolded 
as they did, we draw on the key concepts of content of change, social process, and social context 
(Walsham, 1993) as interlinked units of analysis that facilitate progression from surface description 
to explanation (Kautz, 2004; Kautz and Nielsen, 2004; Pentland, 1999; Pettigrew, 1987).

Content of change refers to the planned and actual process and product of the development 
endeavor (Kautz, 2004; Kautz and Nielsen, 2004); that is the planned and actual ISD process and 
information system under development. The planned is assumed to be an expression of expectation 
that shapes attention and action (Bruner, 2002), and we consider the gap between the expected 
and the actual important for an initial understanding of what characterizes the content and drives 
the process of change. After the initial narrative description of the emergent method, the concept 
of content is therefore applied to come to understand what characterizes the change (Pettigrew, 
1987). Social process focuses on the political (i.e., the distribution of power and balance between 
autonomy and control) and the cultural (i.e., subcultures and the interaction between them) aspects 
of ISD and helps to explain how, that is, through which mechanisms, changes to the content take 
place (Pettigrew, 1987; Walsham, 1993). Social context addresses social relations, social infra-
structure, and the history of previous procedures, structures, and commitments and helps to explain 
why the social process emerges as it does (Walsham, 1993). Previous application of the framework 
to empirical cases shows that the social context creates the social and structural landscape within 
which the social process can emerge and that the social process in turn both enables and constrains 
the content of change (Madsen, 2004; Madsen, Kautz, and Vidgen, 2005, 2006).

As the last step from empirical phenomena toward conceptual understanding, analysis results 
are generalized to Van de Ven and Poole’s (1995) four process theories. Van de Ven and Poole 
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(1995) suggest four different sequences of change driven by different generative motors: (1) life 
cycle, the change process follows a necessary and linear sequence of events driven forward by 
compliance to predefined rules regulated by nature, logic, or institutions; (2) evolution, the change 
process takes place as a recurrent and cumulative sequence of variation, selection, and retention 
driven forward by competitive survival; (3) dialectical, the change process takes the form of 
thesis–antithesis–synthesis and is generated by conflict among opposing forces; (4) teleological, 
the change process emerges as an ongoing sequence of goal setting, implementation, evaluation, 
and modification driven forward by consensus among cooperating actors. The four process theories 
constitute ideal types that individually or in combination help to explain how and why change 
unfolds (Van de Ven and Poole, 1995). The theoretical framework (see Table 5.1) will be used to 
organize and perform a comparative analysis of the two cases.

THE EMERGENT METHODS

This section presents narrative accounts of how the emergent methods unfolded first, in the Mul-
timedia case and second, in the Web case.

The Multimedia Case

The Multimedia project concerned the development of a complex MMIS for dissemination of 
knowledge about SPI to practitioners. It was performed for the EU on a commercial fixed-price 
contract, which specified the project, the financial budget, the formal project organization, and the 
main building blocks and requirements for a phased development approach and project progress 
reporting. The formal project organization consisted of an overall project manager and predefined 
the distribution of work and responsibilities between a Norwegian IT consultancy and a Danish 
academic organization as well as bimonthly project meetings for all involved developers. The 
development was undertaken by a project team consisting of six to eight people, with three to four 
people from each of the two organizations. The overall project manager was located in Norway, 

Table 5.1

The Theoretical Framework

Description Object of study The emergent method—the unfolding development process and 
the activities, and applied method elements that constitute this 
process

Key concepts Relations between concepts

Content of change What characterizes the planned and actual product and 
process of change?

Social process How do political and cultural aspects help explain the way 
changes to the content take place?

Social context How do social relations, infrastructure, and history help explain 
why the social process emerges as it does?

Explanation

Process forms  
and drivers

Which theoretical process form(s) does the emergent method 
resemble, if any? Which generative motor(s) drives the 
emergent method, if any?
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while a local project manager was responsible for the Danish team members. All project team 
members had long formal educations in computer science, but varying degrees of practical experi-
ence in the relevant areas of SPI, ISD, and MMIS.

From the beginning, the application was envisioned as an MMIS consisting of components 
representing relevant themes of SPI in the form of hypermedia-linked textual and animated slide 
shows, a video film presenting a case company, a videotaped expert panel, and a large annotated 
bibliography. The planned development process covered a time period of eighteen months. It was 
outlined as an in-house developed method and formally included in the EU contract. The method 
specified (1) a number of sequential steps, (2) milestones and deliverables, (3) development activi-
ties, (4) the application of MMIS analysis and design techniques for information content model-
ing as well as functional, interface, and technical design (such as treatment writing, storyboards, 
flowcharts, and scripting languages), and (5) the use of supporting software tools for multimedia 
development. The in-house developed method was inspired by a waterfall model approach to 
MMIS development and multimedia development techniques recommended in available books 
and papers (e.g., Bergman and Moore, 1990; Sørensen, 1997).

The actual ISD process lasted twenty-two months and only partially followed the path outlined 
in the method description. Two months into the project, communication problems between the IT 
consultancy and the academic team led to adaptation and standardization of information-content 
templates and the accompanying storyboards. Moreover, after four months, it became apparent 
that the planned sequential process could not appropriately deal with a number of complex tasks. It 
proved difficult to develop storyboards for the individual information elements without specifying 
the overall information architecture. In addition, attempts to define the relationships between the 
different interlinked hypermedia elements were difficult. This made the related task of determining 
the user’s access to the features describing the navigational possibilities equally problematic. Thus, 
from month four, the overall information architecture, the hyperlink navigation structure, and user 
interface modeling activities were performed in parallel. Furthermore, in month six, these activi-
ties were officially assigned to and performed by one subteam (i.e., the Danish academic team), 
which was geographically located in the same place. From that period on, the other subteam (i.e., 
the IT consultancy team) largely provided input for the modeling and design tasks in the form of 
literature reviews. This specialization of tasks and the resulting reallocation of resources in favor 
of the academic team had not been anticipated in the original project plan. Thus, even though an 
elaborate in-house–developed method that incorporated the unique requirements of the particular 
situation had been outlined, it was necessary to devote much time during the project to negotiating, 
revising, and revisiting the way of (co)working.

The Web Case

The Web project was performed in a UK-based market research company. It concerned the de-
velopment of a technically complex Web-based research data repository for collection, storage, 
processing, and formatting of a large volume of market data about companies in the drinks industry, 
such as manufacturers, packagers, and distributors. The RDR project was undertaken as in-house 
development, but was performed collaboratively by the market research company and academic 
staff within a government-funded program, the Teaching Company Scheme (TCS), which promotes 
collaboration between industry and university. TCS specified the project duration (two years) 
and the formal project organization, which comprised a steering committee (quarterly meetings), 
a project team (monthly meetings), and the involvement of support from academic researchers 
(weekly). The steering committee consisted of six to eight people, including the project team, 
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which was made up of three to four people with one full-time developer who did most of the actual 
hands-on work. All of the project team members had long formal educations in computer science 
and from zero to fifteen years of practical experience, with the full-time developer being a newly 
graduated master’s student with no prior industry experience. For this reason, the developer was 
formally supported by a university-employed academic supervisor and an industry supervisor, who 
was part of the company management and the daily leader of the market research department.

From the outset, the application was envisioned as an RDR to be implemented based on a com-
mercial Web content management system, which would support the market research department’s 
internal work practices (i.e., the report production process) and external sale to customers through 
storage and online analysis and reporting of data at a high granularity. Before project initiation, 
the contingency approach Multiview/WISDM (Vidgen et al., 2002) was chosen as the formalized 
method and used to inform the construction of a situation-specific method outlined in the form 
of a detailed project plan, which was included in the original TCS project proposal and formally 
approved by the TCS program. The development process was planned as a prototype driven ap-
proach where two of the department’s core products, paper-based market reports on the bottled 
water and watercooler markets, would be used as the point of departure for implementing the first 
working prototype. As the application was expected to be based on a Web content management 
system, the development approach was planned with an emphasis on the Web-based front-end, 
organizational change and implementation.

However, when the project commenced, the two paper-based market reports quickly led the 
project team to discover that the amount of data and data relationships was extensive and an 
initial market scan of available content management systems revealed that they were not sophis-
ticated enough to support that kind of data complexity. Thus, a few months into the project, the 
project team decided that the RDR application would be custom-made and a software tool was 
adopted to support the now more technically complex development task. Furthermore, the RDR 
application was not developed with an equal eye to internal process improvement and external 
sale as planned, but with an emphasis on the internal report production process. This was due to a 
performed requirements analysis, which showed that the current report production process could 
be greatly improved by automation of mundane tasks (e.g., data collection, data entry, and report 
formatting). The project team and company management therefore decided to give priority to the 
internal process. Eight months into the project, company management also decided that the RDR 
application should be able to produce what they perceived as the market research department’s 
main product, namely, paper-based reports. In contrast, the project team had expected all data 
analysis and reporting to be online. The technical complexity of the system was ever-increasing, 
and after ten months the project team decided that the planned three-layer architecture would have 
to be expanded with an additional layer of prespecified data queries and report-formatting scripts. 
The first working prototype was released for use by market researchers after approximately a year 
and a half, but work to enhance and extend functionality continued throughout and well beyond 
the project’s two-year time frame. The vision remained constant throughout the project, namely to 
“create an enterprise repository for [the market research company’s] research data” (TCS project 
proposal), but the practicalities of what (product) and how (process) to implement were continu-
ously reconceived and scoped.

CROSS-CASE COMPARISON OF THE EMERGENT METHODS

On first inspection the Multimedia and Web cases seem very similar. Both cases concerned tech-
nically complex information systems, were performed by relatively small project organizations 
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consisting of IS developers with long formal educations, were undertaken as joint university–
company collaborations on EU and TCS contracts, respectively, and in both cases, the formal 
contacts contained situation-specific formalized methods. However, already the different outlines 
of the planned methods viewed as the involved actors’ expressions of the expected indicate that 
the emergent methods would unfold differently: in the Multimedia case the formalized method 
was a phased and sequential process, while in the Web case a prototype-driven development 
process was chosen.

In this section, we analyze the elements and interactions that contributed to method emergence 
in the Multimedia and Web projects. The aim is to explain why the emergent methods unfolded 
differently. In the following, a systematic cross-case comparison is provided, structured according 
to the key concepts of content, process, and context.

Content

What characterized the planned and the actual product and process of change in the two cases? 
In both projects the initial vision of the information systems’ purpose as stated in the formal EU 
and TCS contracts remained relatively stable throughout the development process. Nevertheless, 
in both cases the application and the process did not emerge as planned. Instead, the narrative 
descriptions of the two unfolding methods show that in both cases the product and process were 
subject to ongoing reinventions and reconfigurations (see Table 5.2).

However, the two projects differ in terms of the events that the involved actors considered 
“unexpected” and either problematic or opportune as compared with the expectations manifested 
as the planned product and process. Thus, with regard to the Multimedia case we propose that the 
perceived problems and applied solutions primarily concerned the gap between the planned and 
the actual process, that is, process deviations, iterations, methodical breaches, organization, and 
specialization. In contrast, we suggest that the involved actors’ conceptualization of challenges 
and coping mechanisms in the Web case largely concerned the gap between the envisioned and 
the actual product, that is, technical obstacles, and continuous definition and revision of systems 
architecture and prototype content.

Process

How do political and cultural aspects help to explain how changes to the content took place in 
the two cases? In both the Multimedia and Web cases, the social process was facilitated by a 

Table 5.2

Content of Change

Multimedia case Web case

Similarities Stable vision of product purpose Stable vision of product purpose
Product and process subject to ongoing 
reinvention and configuration

Product and process subject to ongoing 
reinvention and configuration

Differences Reinventions and configurations of content 
driven by perceived gap between the 
planned and the actual process

Reinventions and configurations of content 
driven by perceived gap between the 
planned and the actual product
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few influential actors who wrote the initial EU and TCS project proposals, suggested the major 
changes, and approved all intermediate results during the process; a number of subteams and 
cultures were involved and influenced the continuous reinventions and configurations of the 
content of change (both product and process); and the interaction between these subcultures 
was mediated by the formal project organizations as specified in the EU and TCS contracts, 
respectively (see Table 5.3).

However, there are also important differences between the two cases. In the Multimedia case, 
the power distribution between the project team’s two subgroups was altered during the course 
of the project, with the result that the Danish academic team achieved a dominant position due 
to their greater knowledge about multimedia development and different work values. The Dan-
ish academic team was, for example, willing to work overtime and deliver beyond specification, 
while the Norwegian IT consultants were used to strive to meet customer demands with minimum 
resources. In comparison, the Web project team was a more homogeneous group led by the aca-
demic supervisor, and the power distribution within the project team and between the project team 
and company management remained unaltered over time. Another significant difference relates 
to subculture interaction. While in both cases the formal project organization was an important 
mechanism in ensuring that there was interaction between subgroups, the difference concerns the 
main boundary objects that were used to mediate the interaction, namely, written documents and 
working code, respectively. We suggest that the two cases can be seen as representing two different 
perspectives on systems development: one in favor of and with a strong focus on methods, plans, 
and written documents (i.e., method as overarching approach and important means) and one in 
favor of working code produced through pragmatic application of select methods and techniques 
(i.e., method as helpful tools). The distinction between method as overarching approach and/or tool 
is inspired by Stolterman and Russo (1997) and also relates to the process and product orientations 
identified in the section on content of change.

Table 5.3

Social Process

Multimedia case Web case

Similarities Power distribution in favor of the  
two project managers and the 
principal designer

Power distribution in favor of  
company management and  
academic supervisor

Subteams and cultures exist  
(IT consultants, academic  
personnel)

Subteams and cultures exist (company 
management, academic researchers,  
TCS representative)

Subculture interaction facilitated  
by formal project organization 
specified in EU contract

Subculture interaction facilitated by  
formal project organization specified  
in TCS contract

Differences Two subteams and cultures within 
project team

Project team a homogeneous group led 
by academic supervisor

Altered power distribution, manifested 
in academic team achieving a 
dominant position

Unaltered power distribution throughout 
the process

Subculture interaction mediated by 
written documents

Subculture interaction mediated by 
working code
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Context

How do social relations, social infrastructure, and the history of previous structures, commitments, 
and procedures help to explain why the social processes emerged as they did? In the Multimedia 
project, the social context was shaped by long-term social relations between the overall project 
manager, the local project manager, and the principal designer, a former student of the local project 
manager, and the social infrastructure was characterized by the involvement and easy accessibility 
of these three influential actors. However, already from project initiation there was some rivalry 
between the two project managers, which led to a slightly competitive atmosphere and ultimately 
to the shift in task and power distribution. The overall project manager explains:

In the early stages of the project, the two project managers based on a certain personal rivalry 
had, despite the defined information strategy and the existing treatment document, different, 
but not clearly, articulated levels of ambitions with regard to the MMIS. (Kautz, 2004)

Historically, the overall project manager and the IT consultancy team members in general 
had experience with EU projects, ISD, and SPI, but not with multimedia development. The local 
Danish project manager had previously developed and tested his own methodical approach in 
a number of educational projects, was an expert in SPI and an experienced teacher in the fields 
of ISD and multimedia. The principal designer had experience with MMIS development and 
knowledge about ISD, but little acquaintance with SPI. The local project manager and the prin-
cipal designer advocated and facilitated the introduction of additional templates and standards 
as a means for coping with differences in the project team members’ knowledge, work practices, 
levels of detail, expectations, and ambitions, while the overall project manager was attentive 
toward the monitoring and reporting of project plans, progress, finances, and resources. Together, 
the three influential actors’ different backgrounds and different emphasis during development 
(i.e., EU reporting requirements, formalized method development, multimedia development) 
as well as their relationship to each other help to explain why the development process was 
driven by conflicts, power issues, and a strong methodical process orientation manifested in a 
focus on written documents.

In the Web case, the social context was shaped by long-term trust-based social relations be-
tween company management and the academic supervisor due to, among other things, a previous 
two-year project within the TCS program. This meant that there was a shared understanding of 
the project vision, the appropriate development approach, the information technology to be used, 
and the required project organization specified by the TSC. The social atmosphere is illustrated 
in the following citations.

Between management and project team: “Once a month is a technical meeting, which I 
receive the minutes of . . . I can contribute at the broader level and just reassure myself that 
the project is going well, but because they are a particularly good team, they are getting on 
with it and I’m happy with that.” (The Web case, company chairman, interview, November 
2002)

Within project team: “The tone and atmosphere was very friendly and cozy. It is a small team 
and there seems to be close collaboration, even though there is a physical distance between 
[the market research company] and the University.” (The Web case, involved researcher’s 
personal project diary, entry: March 5, 2002)
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The strong relations and shared assumptions cemented the distribution of power in favor of com-
pany management and the academic supervisor and meant that the shared understanding was passed 
on from these actors to the newly employed developer. The academic supervisor’s background and 
his preference for data modeling, technology, and prototyping were especially influential (Madsen, 
2004; Madsen, Kautz, and Vidgen, 2006), as was his role as a “boundary spanner” (Curtis, Krasner, 
and Iscoe, 1988), linking the steering committee and project team as well as the past, present, and 
future. Together, management’s and the academic supervisor’s history and long-term trust-based 
collaboration help to explain that even though the content of change was continuously reconceived, 
the development process was driven by a set of shared underlying assumptions, stable power rela-
tions, and an agreed-upon product orientation manifested in a focus on working code.

In both the Multimedia and Web cases, the social context was characterized by long-term social 
relations between, and a high degree of involvement of, the influential actors. However, the analysis 
of social context shows that the two cases are distinctively different in that the emergent method 
in the Multimedia project to a large extent can be explained by conflict, while the unfolding of the 
method in the Web case is best understood in terms of consensus (see Table 5.4).

THE EMERGENT METHODS’ FORMS AND DRIVERS

In the Multimedia case, the project was initially planned to follow a phased and sequential in-house-
developed method. However, the emergent method took the form of a dialectical process (Van de 
Ven and Poole, 1995), where the two subgroups in the project team engaged in a power struggle 
leading to a sequence of events that roughly followed a thesis–antithesis–synthesis pattern. In this 
dialectical process, conflict regarding how to perform the development process was the major driver 
of change, and the outcome was an altered power balance, reallocation of tasks, and standardization 
of documentation templates. In the Web case, the project was initially outlined in a detailed plan for 

Table 5.4

Social Context

Multimedia case Web case

Similarities Long-term social relations between the 
three influential actors (the overall project 
manager, the local project manager, and 
the principal designer)

Long-term social relations between 
company management and academic 
supervisor

Social infrastructure characterized by 
involved and easily accessible overall and 
local project manager

Social infrastructure characterized 
by involved and easily accessible 
management and academic supervisor

Differences Close relations, but also a certain rivalry 
between the two project managers

Influential actors’ long-term trust-based 
relation and collaboration within TCS 
program, academic supervisor as 
boundary spanner

The three influential actors had different 
backgrounds and emphasized different 
aspects during development (i.e., EU 
reporting requirements, formalized method 
development, multimedia development)

Shared understanding of company, 
project vision, and established work 
practices passed on from management 
and academic supervisor to newly 
employed developer
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a prototyping approach. In practice, the emergent method unfolded as a teleological process (Van 
de Ven and Poole, 1995), where the project team and company management acted from a shared 
understanding resulting in a process of continuous social construction of goals according to new 
decisions and discoveries. In this teleological process, consensus regarding the (re)formulation of 
goals for the product under development was the main generative motor of change and the outcome 
was a custom-built information system aimed at the company’s internal report production process. We 
conclude that the answers to the questions of how the two methods emerged and why they emerged 
differently can be understood with reference to conflict versus consensus.

This is not to say that the Multimedia case was not also a teleological process at times, that there 
was not a single conflict or dialectical aspect in the Web case, or that, if closely scrutinized, the 
empirical data would not also reveal life-cycle elements. Moreover, by advocating a conceptual 
understanding of method emergence we do not aim to simplify the complexity of practice. The 
application of the theoretical framework to the two empirical cases shows clearly that in practice 
there are numerous factors, actors, and interactions that all influence and shape the emergent meth-
ods. As such, it is easy to conclude that emergent methods come about in a largely unpredictable 
and unmanageable (i.e., uncontrollable) way. This may be so. However, we propose, based on the 
research presented in this chapter, that theories and frameworks are needed to help practitioners 
and researchers go beyond the immediate and “messy” surface phenomena of the empirical world 
to a deeper, more conceptual understanding of the form(s) and driver(s) of method emergence. 
From theories of method emergence it may in turn be possible to identify and proactively exploit 
or avoid the generative motor(s) of a change process (Van de Ven and Poole, 1995). We suggest 
that our theoretical framework or similar work can be applied by both practitioners and researchers 
to read the situation before project initiation, during development, and after project completion in 
order to proactively identify the dynamics inherent in or relevant to a particular change process, 
to leverage these dynamics, and to be attentive to their potential pitfalls. In line with this, Walz, 
Elam, and Curtis (1993) state that conflict is a powerful mechanism for facilitating learning, and 
not a debilitating factor that should be suppressed. To spark creativity through conflict manage-
ment, these authors recommend the use of, for example, the devil’s advocate approach, dialectical 
methods, and techniques for surfacing and resolving the project team’s underlying differences and 
similarities. However, there is no guarantee that conflicts produce the desired creative syntheses 
that drive the process forward in a dynamic way. Without facilitation, conflict may well lead to 
unresolved power struggles or one subgroup’s unproductive domination. Facilitated social construc-
tion of goals is also a powerful vehicle for change, which can be leveraged through, for example, 
formal organization (meetings, staffing, etc.) and more or less formally appointed boundary 
spanners (Curtis, Krasner, and Iscoe, 1988; Walz, Elam, and Curtis, 1993). However, teleological 
processes where goals are reformulated on an ongoing basis are inherently unpredictable and risk 
discontinuity. Moreover, there may be underlying and undiscovered conflicts and differences of 
opinion, even when such processes are facilitated.

CONCLUSION

This chapter aims to explain how and why emergent methods unfold differently. Based on literature 
about contextualism, structuration theory, and change processes, a theoretical framework is developed 
and used to provide narrative accounts, systematic comparisons, and generalization of findings to theory 
for two longitudinal case studies of method emergence in a Multimedia project and a Web project.

The application of the theoretical framework shows that the Multimedia and Web cases are 
very similar with regard to structural characteristics (such as system complexity, team size, con-
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tract type, etc.), the emergent nature of the development process and product, and the long-term 
social relations between, and high involvement of, a few influential actors. However, despite these 
similarities, the emergent methods unfolded as two fundamentally different sequences of change. 
In the Multimedia case, the emergent method unfolded as a dialectical process, where conflict 
regarding how to perform the development process was the major driver of change. In the Web 
case, the emergent method took the form of a teleological process, where shared assumptions 
and ongoing (re)formulation of goals for the information system under development were the 
main generative motor of change. We conclude that how the two methods emerged and why they 
emerged differently can be explained with reference to power struggles and conflict resolution in 
the Multimedia case versus consensus and social construction of goals in the Web case.

The research presented in this chapter points to the need for theories and frameworks that go 
beyond the “messy” surface phenomena of method emergence in practice. The demonstrated 
theoretical framework is a step toward a more conceptual understanding and can be applied by 
both researchers and practitioners to read a situation before, during, and after an ISD project and 
to identify and leverage the drivers of emergent methods.

In this chapter and at this stage of theory development, the two empirical cases were selected 
and analyzed due to their apparent likeness, in particular, that both projects concerned contract-
regulated university–company collaborations. However, more research is needed to overcome this 
deliberately imposed limitation. Future work will therefore involve the analysis and comparison of 
more and more purely industry-based cases to refine the theoretical ideas and to identify patterns 
in the underlying forms and drivers of ISD method emergence that can be avoided or exploited 
depending on situational factors, actors, and their interactions.
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Chapter 6

TRANSITION TO AGILE SOFTWARE 
DEVELOPMENT IN A LARGE-SCALE PROJECT

A Systems Analysis and Design Perspective

Yael Dubinsky, Orit Hazzan, David Talby, and Arie Keren

Abstract: In this chapter we focus on the implementation of Extreme Programming, one of the 
agile software development methods, in a large-scale software project in the Israeli Air Force, 
and describe the transition from a plan-driven process to an agile one as it is perceived from the 
systems analysis and design perspective. Specifically, during the first eight months of transition, 
the project specifications and acceptance tests of the agile team are compared with those of a 
team that continues working according to the previous plan-driven method. Size and complexity 
measures are used as the basis of the comparison. In addition, the role of the systems analysts 
during the transition process is examined and different development models with respect to systems 
analysis and design are discussed.

Keywords: Software Engineering, Agile Software Development, Systems Analysis and Design, 
Systems Analyst Role

INTRODUCTION

Agile software development methods mainly aim at increasing software quality by fostering 
customer collaboration and performing exhaustive testing (Cockburn, 2002; Highsmith, 2002). 
The introduction of agile software development in general and of a specific agile method, for 
example, Extreme Programming (Beck, 2000; Beck and Andres, 2005) into an organization is 
accompanied with conceptual and organizational changes. For example, with Extreme Program-
ming all teammates listen to the customer stories, contribute to high-level design, and maintain 
detailed designs during each iteration of development. Another example is the concept of whole 
team, which means that all role holders are part of the development team, in contrast to an or-
ganizational structure composed of separate groups such as systems analysts, developers, and 
quality assurance people.

The role of systems analysts, as well as other roles, receives a different meaning in the agile 
software development environment. The change might pass smoothly in a one-team project in a 
small company; however, the change becomes significant when agile-oriented software development 
process is introduced into a large-scale project in a large organization in which many software teams 
work for many years according to a traditional plan-driven software development process.
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Review of the most recent literature on agile software development reveals that the research 
that deals specifically with the design-related activities carried out in agile software development 
environments is very limited. The existing literature that does address design-related aspects of 
agile software development deals mainly with the incorporation of a specific design method in an 
agile project and with the effectiveness of the agile approach with respect to the design activity. 
For example, Patton (2002) describes how user-centered design in agile software development 
increases success, helps to meet end-user expectations sooner and supports the development of 
a usable software; Feldman (2003) describes how design by contract is synergistic with several 
practices of Extreme Programming; Macias, Holcombe, and Gheorghe (2003) illustrate how 
Extreme Programming reduces the time dedicated to specification and design—7 percent in an 
Extreme Programming project vs. 14 percent in a plan-driven project. In addition, literature exists 
on refactoring, test-driven development, agile modeling, and other agile practices that are closely 
attached to design in agile software development processes.

This chapter presents one aspect of a research project we conducted for the past three years. 
Specifically, it examines the transition from a plan-driven process to an agile one in a large-scale 
software project using the perspective of systems analysis and design. The project is conducted in 
the army, which can be characterized as a large and hard-to-change organization with respect to 
fixed regulations, project approval, management methods, organizational structure, and culture. 
In previous works we presented results with respect to the specifications and testing artifacts 
(Dubinsky et al., 2005, 2006; Talby et al., 2006). In this chapter, we enrich with further research 
data and elaborate with data analysis about the role of the systems analyst.

The main contribution of this research is expressed in the field-based evidence that it provides 
with respect to the role and the functionality of systems analysis and design in an agile large-
scale software project in a large organization. Thus, we address the need for increasing the body 
of knowledge that deals with agile practices (Erickson, Lyytinen, and Siau, 2005) by adding the 
topic from the systems analysis and design perspective.

THE TRANSITION PROCESS

The in-transition software project on which this chapter focuses has been developed by a dozen 
small teams of skilled systems engineers, systems analysts, developers, and testers, organized in a 
hierarchical structure of small teams. The project develops large-scale, enterprise-critical software, 
intended to be used by a large and varied user population.

As aforementioned, from an organizational perspective, the army is known as a large and 
hard-to-change organization. However, in our case of software development, when the project 
leadership decided to change the software development method to cope with the challenges that 
the project set, the unit leadership supported the decided-upon transition as a means to improve 
software process and quality.

After several months during which the fitness of different development methods to the project 
had been investigated, Extreme Programming was selected to be implemented and a pilot team of 
fifteen people was established and started working according to this agile method. All of the other 
teams on the project continued working according to the previous plan-driven method.

It is important to note that prior to the transition, tools and procedures were developed and 
used by the people in this software unit for years. Though it was accepted that agile develop-
ment can improve the process, it was also agreed that there are tools and procedures that will 
not be changed at the current stage, either because they are good practices or because of time 
constraints.
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The software project is built based on a large-scale in-house object-oriented framework (Fayad, 
Schmidt, and Johnson, 1999), which handles many of the underlying technical aspects of the sys-
tem. One aspect is formal detailed specifications. This framework relies on a metadata repository 
(Talby et al., 2002), which contains most of the system’s specifications: data entities, data types, 
actions, transactions, user types and privileges, messages, external interfaces, and so forth. These 
data are edited in the repository, in formal forms—in contrast to free-text documents—and much 
of it is used to automatically generate code and other files.

As a result of working with this framework, the process of development starts with functional 
analysis, continues with writing the formal detailed specifications in the metadata repository, 
and then coding those parts of the specifications that are not automatically generated. In such a 
process, the specification writers should adopt a formal and precise style, and as the formality 
increases, the cost of communication increases since team members should communicate later 
for clarifications.

During the transition process all teams in the project, including the agile team, continue work-
ing with formal detailed specifications and with the tools that support them.

The roles involved with the systems analysis and design in this project are architects, operational 
systems analysts, functional systems analysts, and systems engineers. In this work we focus on the 
operational and functional systems analysts. The operational systems analysts are practitioners in 
the operational aspects of the project subject matter and are part of an operational analysis group. 
They define the system to be developed and they represent the customer and the end users. The 
functional systems analysts process the operational specifications, converting them into engineered 
technical specifications. They are part of the development group.

The change in the role definitions stems mainly from the change in development process. As 
part of the transition process, prior to the development work of the agile team, systems analysts 
make only preliminary analysis and deliver the knowledge to the agile team by face-to-face con-
versations, presentations, and/or high-level documents. The agile team then, together with the 
customer and systems analysts, produces the detailed project specifications.

THE RESEARCH FRAMEWORK

The exploration of this transition process started two years ago when it was decided to change the 
traditional plan-driven software development method that had been used in this organization for 
many years. In previous work, we presented the way agile software development was introduced 
into this project (Dubinsky, Hazzan, and Keren, 2005) as well as the set of product and process 
metrics evolved in the first release of the pilot team, which guided in practice the development 
process (Dubinsky et al., 2005).

Two approaches were used in this research of the transition process: a quantitative comparative 
approach and a qualitative approach, as is elaborated in what follows.

Quantitative Comparative Approach

The first approach is a quantitative comparative one, by which we aimed at measuring the im-
plications of the transition to the agile method on the systems analysis and design. Accordingly, 
we examined and compared two sets of specifications and tests produced by both kinds of teams. 
The first set belongs to the team that worked according to the plan-driven method and during the 
examined period was in the phase of development and fault corrections before delivery. The sec-
ond set belongs to the team that worked according to the agile method and during the examined 
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period developed four releases that were each two months long and composed of four two-week-
long iterations.

We use several measures to compare specifications and tests. One measure is the size of the 
specifications and tests, which is used for comparison alignment. Another measure of the specifi-
cations is composed of two measures that are used to assess the complexity of the specifications, 
one of which is inspired by the measure of code cyclomatic complexity (McCabe, 1976; Watson 
and McCabe, 1996). In the data analysis section the measures are elaborated and illustrated. These 
measures were selected because we wanted the quantitative data to represent ongoing real work 
rather than one or a few checkpoints of an artificial setting. Using the specifications and test data 
enables us to examine continuous fieldwork over eight months.

Though the compared specifications and tests are taken from two different products of two dif-
ferent teams, we suggest that when a comparison between two development methods is made, it 
is more important that the two teams work in the same organization, with the same infrastructure 
and tools, and with people of similar experience and expertise. Furthermore, in order to eliminate 
as much as possible the differences in the two products, we searched for trends and relative-to-size 
technical measures rather than absolute numbers.

Qualitative Approach

The second research approach is a qualitative approach in which we sought to understand the 
process from the systems analysts’ and designers’ point of view. Accordingly, we interviewed 
systems analysts and asked them questions such as “Do you feel that your role has changed? If 
no, please describe your role before and after the transition. If yes, please describe how your role 
has changed.” “Compare the traditional method of software development and the agile Extreme 
Programming one.”

In addition, we used two questionnaires. The first one is a software development culture ques-
tionnaire (Hazzan and Dubinsky, 2005) that maps the perspective of our interviewees with respect 
to software development processes (see Appendix 6.1). The second questionnaire is related to the 
role of the systems analyst (see Appendix 6.2).

DATA ANALYSIS

In this section, the project specifications and acceptance tests are compared, and the change in the 
role of the systems analysts is examined.

Specifications Comparison

As stated earlier, some of the specification measures consider modularity and relative complexity. 
To define such measures, we define a module of specifications—in contrast to a module of code, 
such as a class or a package. As described above, the specifications of the analyzed projects were 
written in a semiformal metadata repository, which enabled the systems analysts and architects 
to define specifications modules.

The chosen method of specifications was data-centered; that is, a module in this system com-
pletely specifies one data entity and its related processes. Each module specifies—for one entity 
and its subentities—the database layout and properties, application server services, user interface 
forms, queries, input and output to external interfaces, permissions, and other specified features. 
This comprises the entire business logic that must be implemented. Part of this business logic is 
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specified formally, and later, code was generated based on this specification; other parts of the busi-
ness logic are expressed in free text. Naturally, free-text logic entails more complexity in the system, 
since it specifies nonstandard logic. This will be a key issue when we define the measures.

We denote the specifications of the team that worked according to the plan-driven method by 
SpecP and the specifications of the team that worked according to the agile method by SpecA. 
During four releases, continuing eight months, we took monthly measurements. During the ex-
amined period, the number of entities nearly doubled in the agile project (87.5 percent growth), 
in comparison with about 6 percent in the plan-driven project (see Figure 6.1). These numbers 
closely match the growth in size and complexity of both projects. The difference in growth levels 
reflects the different stages of these two projects. This fact is also reflected in the difference be-
tween the absolute sizes of the two projects: the agile project grew from 32 to 60 modules in an 
intense development stage, while the plan-driven project, which was in a fault correction phase 
before delivery phase, grew from 188 to 199 modules during the same period.

As stated before, part of the specifications is written formally in order to enable automatic code 
generation. Figure 6.2 shows an example of a specification fragment. The first measure we use, 
size, intuitively represents the number of decisions made in the specifications. Therefore, a size 

SpecP

180

185

190

195

200

205

210

Feb Mar Apr May Jun Jul Aug Sep

SpecA

30

35

40

45

50

55

60

65

Feb Mar Apr May Jun Jul Aug Sep

Figure 6.1  Number of Entities



TRANSITION  TO  AGILE  SOFTWARE  DEVELOPMENT  IN  A  LARGE-SCALE  PROJECT     77

of 1 is given to each simple specified value (such as minimal value and maximal value) and to 
each line of free-text specifications. Therefore, the size of the fragment in Figure 6.2 is 12 since it 
has 6 simple values, 1 for the one line of the “Is Required” specification, and 5 for the five lines 
of the “Do on Change” specification.

Since the simple values in a specification result in generated code, and hence do not require 
any coding, the size measure does not reflect the complexity of a given specification for the de-
velopment team.

Therefore, complexity is created only by the free-text specifications. To represent this, we 
derived two complexity measures. The first one is the Logic-Based Complexity calculated by 
counting the number of lines of nontrivial specifications. For the specification shown in Figure 
6.2, this measure would be 6 (the six last lines). The second is the Keyword-Based Complexity that 
is inspired by the cyclomatic complexity measure (McCabe, 1976; Watson and McCabe, 1996), 
in which a sequential method has a complexity of 1, and each decision that causes a binary split 
raises the complexity by 1. This definition is equivalent to the definition of complexity as the 
number of paths in the method’s decision graph. Accordingly, we emulate the cyclomatic com-
plexity measure by defining the complexity of free-text specifications paragraphs to be 1 and add 
the number of appearances of the following popular keywords: if, else, for-every, for-each. For 
the specification in Figure 6.2, this measure would be 6, since we count 2 from the “Is Required” 
specification (1 + 1 occurrences of “if”), and 4 from the “Do on Change” specification (1 + 2 “if” 
+ 1 “else”). Validating with the specifications, this emulation was found as an appropriate and 
sensible approximation for the actual number of paths in the specification. Although these speci-
fications are free text, the analysts writing the specifications normally use only these words. They 
are often manually marked by bold font, as shown in Figure 6.2. This is a project-wide practice, 
ensuring the quality of data.

Figure 6.3 presents the averaged keyword-based complexity of SpecP and SpecA. Note that 
the scale range in the two graphs has different values; still it is the same scale size so the view is 
comparative. The first evident difference between the graphs, depicting the average (per-module) 
keyword-based complexity of the plan-driven versus the agile project, is the absolute values. The 
per-module keyword-based complexity of the agile project is considerably smaller—about 3.5 
times smaller—than that of the plan-driven project. This does not mean that the agile project is 
simpler, but rather that its specification uses more modules to convey the same amount of speci-
fications, and thus the average is lower. In other words, the graphs indicate that the agile project 
is more modular, a fact that has implications for software life cycle.

Figure 6.2  Specifications Sample

Field Name: Name
Field Type: String
Description: The customer’s full name
Minimal Length: 1
Maximal Length: 40
Field Editor: Text Box
Is Required: only if the ID field is empty
Do on Change: If the ID field is non-empty,

check that it matches the new name.
If match,

enable the “OK” button,
else display the “Name/ID Mismatch” error message.
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Several complementing explanations for this outcome follow.

•	 First, the plan-driven project is three years older than the agile one and is at a much later 
development stage. Although the plan-driven project is still being developed, a large existing 
code base sometimes enforces the enhancement of existing modules rather than the creation 
of new ones.

•	 Second, in the agile project, continuous refactoring is performed in order to break down 
large modules and reduce dependencies. When a module gets too complex, it is refactored 
into (possibly several) simpler modules. The goal is to keep the design simple over a long 
period of time, rather than assuming the “right” design in advance. In contrast, in traditional 
software projects, the design of modules is usually set in advance. Further, the high absolute 
complexity of the plan-driven project, achieved over time (recall that it is in a more mature 
state than the agile project), makes refactoring at this stage more expensive and risky.

•	 Third, some of the business analysts who worked in the agile project had previous analysis 
experience in the plan-driven project. Thus, they corrected past mistakes and produced a 
more modular design this time.

Figure 6.3	 Averaged Keyword-Based Complexity in Eight Monthly  
Checkpoints
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•	 Fourth, in the agile project, all team members may potentially work on the specifications—all have 
been trained to do so—a fact that promotes the separation of specifications into more modules, 
so that more people can edit them in parallel. This tends to make modularity and refactoring a 
practical necessity, ensuring their ongoing realization and consideration in practice.

•	 And finally, the complexity measures may be higher for the plan-driven project because 
most of its specifications are not standard features in the framework, and accordingly are 
specified via free-text business logic, which implies higher complexity. This hypothesis is 
referred to in the sequel by examining the ratios of complexity to size (in contrast to number 
of modules) in the two projects.

Further observation of the two graphs shows that the agile project managed to keep modules 
simple over time. This is true even though the agile project grew faster than the plan-driven 
project during the examined period. Putting aside the agile project’s first month, which included 
major one-time setup work, it can be observed that from February to September the number of 
modules and the overall size of the specifications grew by 65 percent and 70 percent, respectively, 
while keyword-based complexity grew by 4.3 percent. In contrast, while the plan-driven project’s 
number of entities and total size grew by 6 percent and 8 percent, respectively, its keyword-based 
complexity grew at a larger rate—by 5.7 percent.

This means not only that the agile project is more modular, but also, in addition, it is devel-
oped in a manner that maintains its modularity better than that of the plan-driven project. Again, 
this can be attributed to the same factors mentioned above: the project’s stage and the analysts’ 
experience, in addition to the agile practices of refactoring and collective ownership, which in 
this project were applied to the specifications as well.

Figure 6.4 presents the logic-based complexity of SpecP and SpecA, averaged over all modules 
of each project. The graphs show a very similar picture to that shown by the average keyword-
based complexity graphs. Once again, the complexity values of the plan-driven project are four to 
five times greater than those for the agile project. The results, and hence the possible explanations, 
are consistent with those given for keyword-based complexity.

The difference in absolute complexity can be explained by several factors that do not stem 
from the development method. For example, the agile project could be inherently simpler than the 
plan-driven one. However, developers’ evidence in both projects revealed that this is definitely 
not the case. As an explanation, it was suggested that the agile project reuses more features built 
into the framework and therefore can be specified in a way that enables automatic code genera-
tion. By presenting the ratio of logic-based and keyword-based complexity to the size measure, 
thereby measuring the proportion of complexity to specification size, Figure 6.5 supports the 
above explanation.

In both the “logic-based and the keyword-based complexity versus size” graphs, the project 
values are relatively constant over time, and are 20–50 percent higher for the plan-driven project. 
This means that in general, the specifications of the plan-driven project use more free-text business 
logic and fewer framework-ready features in order to convey the same size of specifications.

A combination of setting and process can explain this phenomenon. From the setting point of 
view, the agile project started after experience in specification had been gained in the plan-driven 
project, and therefore business analysts knew more about how to utilize the framework. From the 
process perspective, the agile project’s focus on simplicity and ongoing refactoring drives toward 
the writing and maintaining of specifications that are as simple as possible. We do not have quanti-
tative data to assess the relative contribution of each of these factors to the results, but interviews 
with the project team members indicate that both factors influence them.
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Test Comparisons

In this section, we analyze the comparative data dealing with acceptance tests created according to 
the specifications. Figure 6.6 shows the number of test suites (separate test files) of the agile versus 
the plan-driven projects. As can be observed, although the agile project is three years younger and 
several times smaller than the plan-driven project, within the examined period it produced more 
test suites than the plan-driven project developed.

However, this does not mean that the agile project is tested more thoroughly, but, rather, that 
it is tested differently. In the plan-driven project, the development team and the quality assurance 
(QA) team are separate, working in two separate rooms, while only the QA team members write 
tests. Each QA team member is usually responsible for testing several modules, and the team’s 
method is to keep each module’s tests within one large test suite. Since different people normally 
do not test the same module in parallel, this does not pose a configuration control problem. On 
the agile team, on the other hand, all team members write and execute tests on an ongoing basis. 
Therefore, a small number of large test suites would create a serious practical problem, since two 
people would not be able to work on the same test suite in parallel, at least not without requiring 
advance work to enable them to merge their work later on. Therefore, there are two methodologies 

Figure 6.4  Averaged Logic-Based Complexity in Eight Monthly Checkpoints
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for the division of tests into test suites: by modules in the plan-driven project and by tasks in the 
agile project. This gives the plan-driven project the advantage of matching the structure of test 
suites to the structure of the specifications, and gives the agile project the advantage of parallel 
development and a larger available testing force.

Accordingly, as has been explained above, the absolute number of test suites in each project 
is not an appropriate indicator of the actual complexity of the tests in each project. The number 
of tests steps, however, is a sound factor for assessing test complexity, since, by nature, it does 
not depend on how tests are packaged. The number of test scenarios (a list of test steps) is also a 
reasonable indicator, since scenarios are usually written in the same way in both projects.

In order to compare the two projects, some form of normalization is required. It is possible to 
normalize in different ways: by the number of modules in each project, the total size, the keyword-
based complexity, or the logic-based complexity. Table 6.1 summarizes, according to these four 
factors in the last checkpoint, the ratio of the plan-driven project to the agile project.

Figure 6.5  Complexities per Size in Eight Monthly Checkpoints
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As the numbers indicate, any choice of normalization will produce biased results. For example, 
on the one hand, normalization by the number of modules points “against” the agile project, since 
it is more modular and therefore, it seems to have fewer tests per module. On the other hand, 
normalization by the complexity metrics points “against” the plan-driven project, since it has a 
higher complexity-to-size ratio, due to its higher ratio of free-text specifications.

Figure 6.6  Absolute and per-Module Number of Test Suites
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Table 6.1

Ratio of Plan-Driven Versus Agile Project Measures (September 2005)

Number of modules   3.3
Size   9.0
Keyword-based complexity 11.0
Logic-based complexity 13.3



TRANSITION  TO  AGILE  SOFTWARE  DEVELOPMENT  IN  A  LARGE-SCALE  PROJECT     83

Therefore, the most appropriate normalization method seems to be by total size. However, 
according to the projects’ QA personnel, complexity is a more accurate choice, since it is higher 
complexity that requires thorough testing, and not size per se. The rationale for this is that a large 
specification that relies mainly on the existing framework leaves little to be tested, since the use 
of the framework features does not require testing—that would be redundant. At the same time, 
free-text specifications require testing of each business logic. The way we defined complexity is 
highly correlated to the size and complexity of the required tests. The higher the specification’s 
McCabe-like complexity, the more test steps and scenarios are required to cover all of its possible 
paths of execution.

In order to provide a complete picture, we review the testing measures with respect to all four 
normalizations. Starting with size, as shown in Figure 6.7 (top), the plan-driven (denoted by P) 
project’s test steps to size ratio remains relatively constant during this period and is 0.98 on aver-
age. The ratio of the agile project (denoted by A) changes significantly during this period, starting 
at 0.29 after the first setup month of the project, passing the plan-driven project’s ratio after four 
months with a value of 1.14, and reaching 1.74 at the last measurement point.
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The number of test scenarios versus size in Figure 6.7 (bottom) indicates a similar picture. The 
plan-driven project is stable over time, while the agile project changes considerably during the 
examined period, stabilizing in the last three measured months at a value that is on average 2.3 
times higher than that of the plan-driven project.

According to these results, the agile project is more thoroughly tested than the plan-driven project. 
This can be attributed mainly to the development process. In the agile project, a task is not consid-
ered complete until its tests are written and have been passed; further, it is the responsibility of the 
developer who coded a task to write and run the tests. This ensures that tests are written for all tasks, 
and not just for high-priority tasks, as has happened during high-pressure periods in the plan-driven 
project. In the plan-driven project, if the QA team lags behind the development team for any reason 
(insufficient personnel, new features that take more time to test than to code, other urgent work, etc.), 
the developers keep coding features and the lag increases further. This quickly leads to prioritizing 
test writing and focusing on high-risk features. In contrast, in an agile project, the QA personnel are 
part of the development team, and developers are responsible for writing tests as well. In this way, 
the team does not move on with development before testing is completed.

Figure 6.8  Test Steps and Scenarios per Logic- and Keyword-based Complexity
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The four graphs presented in Figure 6.8 show test steps and scenarios versus logic- and keyword-
based complexity; as can be clearly observed, the pattern repeats. The values of the plan-driven 
project are stable, while those of the agile project grow mostly over time, and when the agile 
project’s values seem to stabilize, they are higher than those of the plan-driven project.

Table 6.2 summarizes the average ratio for the last three measured months of the four normal-
ized metrics in the plan-driven project versus the agile project. As can be observed again, these 
consistent results suggest that the overall coverage and level of testing in the agile project are 
higher than those of the plan-driven project.

Further, the results indicate that it took about four months for the agile project to achieve the 
plan-driven project’s level of testing, and that its measures changed greatly during the examined 
period. This can be explained by the fact that in contrast to the plan-driven project, the examined 
period starts with the very beginning of the agile project’s development, and it took several months 
for the development process and environment to stabilize. In contrast, in the plan-driven project, 
tests were not written at all during the first year of the project, and only then did the QA team start 
working. This is a common distinction between agile and plan-driven projects. Agile projects start 
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testing at day one, from the very first task, while traditional projects start testing only after some 
infrastructure exists and some features are stable enough so that tests can be written for them 
without planning major refactoring of these tests as the project evolves.

The last comparison is presented in Figure 6.9, in which the number of test steps and scenarios 
are normalized by the number of entities. As can be seen, this is the only measure in which the 
plan-driven project shows higher values.

Table 6.2

Average Ratio of Measures Between Plan-Driven and Agile Project  
(July–September 2005)

Test steps per keyword-based complexity 2.1
Test steps per logic-based complexity 2.5
Test scenarios per keyword-based complexity 2.9
Test scenarios per logic-based complexity 3.5

Figure 6.9  Test Steps and Scenarios per Number of Entities
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Considering our previous analysis, this makes sense. Although the plan-driven project is nine 
times larger than the agile project in terms of the size measure, it has only six times more modules 
at the beginning of the examined period, and three times more modules toward its end. This means 
that each module in the plan-driven project contains many more specifications than in the agile 
one, and this in turn implies that even though the tests-per-size ratio in the agile project is higher, 
its overall tests-per-module ratio is lower.

The Role of the Systems Analysts

In this subsection, we focus on the systems analyst role and the changes in its characteristics 
during the transition period. Since everyone on both the plan-driven and the agile teams has been 
exposed to the agile notions, we compare the responses of the systems analysts who work in the 
examined project, with those of systems analysts from a major Israeli software company, who do 
not work according to the agile concepts.

The data analysis reveals three working models that may clarify the transition process in the 
examined project as well as its future management.

The first development model is a pipeline-distributed model, according to which a specific 
software project consists of three different groups—the systems analysts group, the develop-
ers group, and the QA testers group. During the development process each group refers to the 
output of the previous group as its input. This description is simplified and therefore does not 
refer to the feedback loops between the groups, assuming that in an ideal pipeline process 
feedback is not needed. In general, this model fits the development process of the plan-driven 
project team.

The agile movement, and specifically Extreme Programming, refers to a working model that 
is more concentrated in terms of space. The Extreme Programming notions of Sit Together and 
Whole Team, along with the practice of Weekly Cycle, require the groups of analysts, developers, 
and testers to share one space, to collaborate on a daily basis, and to produce common artifacts 
on a weekly basis. In general terms, this model fits the way shaped by the agile team during the 
transition period.

We suggest that on a small software team the concentrated model may work also for the 
entire systems analysts group. However, this model did not work for the transition-to-agile team 
that we examined. As has been mentioned before, during the transition process, one functional 
systems analyst worked together with the agile development team and another systems ana-
lyst stayed a part of the external functional analysts group. The group of operational systems 
analysts did not change at all. We refer to this model as a hybrid, in which its hybridism level 
depends on project size and complexity as well as on the perspectives and cooperation of the 
people involved.

In what follows we describe how systems analysts conceive of their role and what effect 
the transition to agile development has on their perceptions. As mentioned previously, to learn 
about these conceptions, we used two questionnaires. The first one is a Software Development 
Culture Questionnaire (SDCQ) (presented in Hazzan and Dubinsky, 2005) and is shown in 
Appendix 6.1. The second questionnaire is a Systems Analysts Questionnaire (SAQ), and is 
shown in Appendix 6.2.

Below we compare answers to the SDCQ given, after a few months of the transition period, 
by fifteen systems analysts of one of the major software companies in Israel with those of five 
systems analysts of the examined project. Several illustrative examples of the differences are 
identified.1
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•	 The SDCQ statement: “It is important to me that development tasks are allocated equally 
among team members.” Four from the industry sample (26 percent) disagree, while the rest 
agree. All five from the examined project agree (none disagree).

•	 The SDCQ statement: “The Israeli hi-tech industry is characterized by unplanned software 
development.” Seven from the industry sample (46 percent) agree, while the rest disagree. 
All five from the examined project disagree (none agree).

•	 The SDCQ statement: “It is important to enable software developers to work flexible hours 
(“come when you want, leave when you want”).” Six from the industry sample (40 percent) 
agree, while the rest disagree. Four out of five from the examined project disagree.

In the SAQ (Appendix 6.2), the interviewees were asked to draw the position of the systems 
analyst in the organization as they perceive it. Figure 6.10 shows the common perspectives of the 

Figure 6.10  The Position of the System Analyst: The System Analyst’s Perspective
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fifteen interviewees from the Israeli software industry. We note that this is field material that is 
used for the analysis. The text was translated to English for the purpose of presentation.

As can be observed, some of the systems analysts conceive of their position as part of project 
management (Figure 6.10b) or even as the heart of the entire organization (Figure 6.10c). Most of 
them, however, draw pictures similar to Figure 6.10a, which means that they receive input from 
the customer and deliver their product to the developers, who, in turn, work with the testers. We 
referred to this model earlier as the pipeline-distributed model.

In contrast, and as has been illustrated in our previous work (Dubinsky et al., 2006), the draw-
ings of the systems analysts of the examined project reflect that their role is mainly conceived as 
a bridge between the customer and the developers. In an additional interview, three months later, 
the systems analysts of the examined project still perceived their position as a bridge, which is 
part of both sides—the customer side as well as the implementation side, which is composed of 
functional analysts, developers, and testers (see Figure 6.11a).

Figure 6.11b reflects that the strict lines of hierarchy (presented in Figure 6.10) are replaced 
with circles, which reflect joint work. The dashed line in the top left corner is directed to the proj-
ect manager and indicates a common goal for all people involved, who, as the figure shows, are 
systems analysts, developers, team leaders, testers, the customer, and the component managers. 
The placement of the customer ellipse in the middle of the picture is not a coincidence; rather, it 
emphasizes the intensive collaboration between the customer and the other parties involved.

The second and third questions in the SAQ refer to the main skills and difficulties of the systems 
analysts. Most of the systems analysts from both research samples indicated the following main 
skills: global perspective, creativity, capability of high-level of abstraction, and openness. Most of 
the systems analysts from both populations indicated the following main difficulties: understanding 
the customer, technical and performance limitations of the development group, tight schedules, 
and continuous changes in requirements.

The forth SAQ question, again, reveals a difference between the general systems analysts and 
those of the agile team. In the industry sample, ten out of fifteen systems analysts mentioned 
only systems analysis tasks like requirements analysis and design. Only five systems analysts 
mentioned tasks such as knowledge transfer and communication with the development team; 

Figure 6.11	 The Position of the System Analyst According to the Examined-Project 
System Analysts
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still, these tasks that involve communication with the developers consume only about 20 percent 
of their time. In contrast, on the agile team (the examined project), the five systems analysts 
allocated 10, 20, 25, 40, and 50 percent of the systems analysis tasks to communication with 
development.

CONCLUSION

This chapter presents the implications of transition to agile software development on systems 
analysis and design. We compare the design and testing products of two software teams in a 
large-scale software project—one of which used a plan-driven approach and the other, an agile 
approach. Both projects used the same methodology and tools for systems analysis.

Examining specifications and tests over eight months, we found that the agile process produces 
specifications that are more modular and simpler than the plan-driven one. We also found that when 
testing activities are strongly embedded in the process, more tests are provided and this behavior 
can hold for months. Accordingly, we suggest emphasizing the testing practice by creating whole 
teams with QA testers as part of the teams, and writing acceptance test suites that are correlated 
with the specifications to strengthen the systems analysis and design.

We further examined the role of systems analysts in the agile environment and found that for 
large-scale projects the suggested hybrid development model fits better, meaning that the project 
analysts’ group is in charge of preliminary analysis and then the agile team together with the 
customer and the team’s systems analysts produce the detailed specifications.

NOTE

1. For simplicity, we merged the “tend to disagree” and “disagree” answers with “disagree,” and “tend 
to agree” and “agree” answers with “agree.”
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APPENDIX 6.1. SOFTWARE DEVELOPMENT CULTURE QUESTIONNAIRE

For each of the following, please mark + in the appropriate column according to your agreement 
with the statement.

Statement Agree
Tend to  
agree

Tend to 
disagree Disagree  

It is important to me that development tasks are  
allocated equally among team members.
It is preferable to develop software by planning at the 
design level, not at the development task level.
It is accepted in the software industry that developers  
who frequently go home at 5 p.m. do not invest  
enough effort at work.
It is preferable to minimize, as much as possible, the 
dependency level among software team members.
Customers expect that software development will not  
be completed on time, thus, it is reasonable to commit  
to an unreasonable timetable.
The Israeli hi-tech industry is characterized by  
unplanned software development.
It is preferable to work in small teams in order to foster 
decision-making processes as much as possible.
Single-release software development is preferable to a 
gradual development process consisting of several releases.
It is important to enable software developers to work flexible 
hours (“come when you want, leave when you want”).
If a software project does not proceed as planned, the 
team must work nights and weekends to catch up.
No one on my team cares about how the software is 
written as long as it works.
A team should extend the development period if it  
ensures improvement of software quality.
When I chose a profession, I took into consideration  
that I would have to devote many hours every day to  
work and give up my personal life.
It is better not to estimate development periods a 
priori since software development is characterized by 
unexpected problems.
During software development, it is preferable to invest  
in code readability in order to help future developers 
whose job will be to maintain the software.
If software development does not proceed according to  
the planned schedule, the schedule should be replanned.
Intuition and improvisation are important in software 
development processes.
It is not important to integrate a reflective process 
(analysis of the past and learning of lessons) into the 
software development process.
When it is difficult to check software, it is okay to move 
forward and not to insist on testing.
There is a tendency on my team not to take personal 
responsibility.
My team tends to adhere to the timetable.
Even if I see an opportunity to shorten the development 
period by skipping tests, I will not take it.
My team tends to build tight timetables (sometimes by 
compromising the software quality).
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APPENDIX 6.2. SYSTEMS ANALYSTS QUESTIONNAIRE

1. Please draw the position of systems analysts in software development organizations.

2. Please indicate at least three main skills required from systems analysts.

3. Please indicate at least three difficulties that systems analysts deal with.

4. In the following table, please describe how the time of systems analysts is allocated to their 
different professional activities.

  Activity					    Percentage (%) of time

  Total					     100%





PART III

AGENT-ORIENTED SYSTEMS ANALYSIS 
AND DESIGN METHODOLOGIES





97

Chapter 7

AGENT-ORIENTED INFORMATION SYSTEMS 
ANALYSIS AND DESIGN

Why and How

Paolo Giorgini, Manuel Kolp, and John Mylopoulos

Abstract: We argue that emerging application areas such as e-business, peer-to-peer and ubiqui-
tous computing require new software development paradigms that support open, distributed, and 
evolving architectures, such as agent-oriented software. We then sketch the Tropos methodology 
for agent-oriented software development and compare it with other proposals.

Keywords: Agent-Oriented Software Engineering, Agents and Multi-Agent Systems

INTRODUCTION

Information systems (hereafter IS) analysis and design techniques have been taught and practiced 
since the 1970s to support the development of IS around the globe. These techniques were founded 
on seminal proposals for expressive languages that model the content of databases and the require-
ments for software systems. For databases, Peter Chen’s entity-relationship model (Chen, 1976) 
stood out among many proposals for semantic data models, and became a de facto standard for 
designing databases in research and practice. For software, Douglas Ross’s structured analysis 
and design technique (SADT) (Ross, 1977) founded the research area known as requirements en-
gineering and influenced software development practice through a number of follow-up proposals 
for modeling languages, including data flow diagrams (DFDs). The growing influence of object-
oriented software development techniques in the 1980s led to a wide range of new proposals for 
modeling languages founded on the primitive notions of object, class, inheritance, and method 
(e.g., Rumbaugh et al. 1991). These techniques were consolidated by Rational Inc. and the Three 
Amigos (Booch, Rumbaugh, and Jacobson, 1999) in the mid-1990s into the Unified Modeling 
Language (UML). UML is the first-ever modeling language standard for software development. 
Its arrival has meant ever-wider recognition and use for analysis and design techniques in both 
academia and industry.

But not only IS analysis and design techniques have evolved over the past thirty years. The 
nature of the information systems we build has changed profoundly as well. Information sys-
tems in the 1970s were monolithic software towers (running on monolithic hardware towers) 
operating in isolation to serve a whole organization. For the past fifteen years, IS have become 
distributed, based on client-server and web-driven architectures. Moreover, these architectures 
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are open, thanks to Web service and agent technologies, so that their components are no longer 
determined at design-time, and can instead be discovered and composed at run-time to fulfill a 
system’s mandate. IS are also multiply interconnected to many other information systems running 
within and outside an organization, so that they can share data and support business processes 
that are geographically and organizationally distributed. Most important, these interconnections 
continuously evolve along with the organization in which they were conceived and its strategic 
alliances. “Service orientation,” “peer-to-peer,” and “virtual organizations” are the buzzwords of 
the day. Welcome to the Age of the Internet!

Within such a context, the components of IS need to support mechanisms for discovering ex-
ternal components that can help them fulfill their mission, for negotiating with these components, 
and for composing selected ones dynamically. In addition, they need monitoring and diagnostic 
mechanisms that supervise the operation of relevant software pieces and ensure that everything 
is in order. Moreover, they need ways of self-repairing and self-tuning to ensure that the overall 
system will be robust, reliable, and effective—despite the fact that it operates in open, dynamic 
environments. None of these mechanisms is intrinsic to the object-oriented software paradigm. 
But they all are intrinsic to the agent-oriented software paradigm (Jennings, 2000).

Not surprisingly, there has been growing interest in agent-oriented software development during 
the past few years, including several projects aimed at the development of a comprehensive meth-
odology for building agent-oriented software. Many of these projects approached the problem by 
proposing extensions to object-oriented software development techniques (e.g., Odell, Van Dyke 
Parunak, and Bauer, 2000). Others adopted agent-oriented programming platforms as a baseline 
and sought to extend these by introducing agent-oriented analysis and design techniques (e.g., 
Wooldridge, Jennings, and Kinny, 2000). An excellent overview of the whole field can be found 
in Bergenti, Gleizes, and Zambonelli (2004). A brief summary is also included in this chapter.

This chapter introduces the Tropos methodology for agent-oriented software development 
and compares it with other proposals in the same family. The following sections present the 
Tropos methodology and its development phases, a brief introduction of the Media Shop case 
study used in later sections to show the Tropos phases, a discussion of related work, and a 
concluding section.

TROPOS

Tropos rests on the idea of using requirements modeling concepts to build a model of the system-
to-be within its operational environment. This model is incrementally refined and extended, pro-
viding a common interface to the various software development activities. The model also serves 
as a basis for documentation and evolution of the software system.

In the following, we describe and illustrate the four development phases of the Tropos meth-
odology: requirements analysis (early and late), architectural design, and detailed design.

Requirements Analysis

Requirements analysis represents the initial phase in most software engineering methodologies. 
Requirements analysis in Tropos consists of two phases: early requirements and late require-
ments analysis. The early requirements phase is concerned with understanding the organizational 
context within which the system-to-be will eventually function. Late requirements analysis, on 
the other hand, is concerned with a definition of the functional and nonfunctional requirements 
of the system-to-be.
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Tropos adopts the i* (Yu, 1995) modeling framework for analyzing requirements. In i* (which 
stands for “distributed intentionality”), stakeholders are represented as (social) actors who depend 
on each other for goals to be achieved, tasks to be performed, and resources to be furnished. The 
i* framework includes the strategic dependency model (actor diagram in Tropos) for describing 
the network of interdependencies among actors, as well as the strategic rationale model (ratio-
nale diagram in Tropos) for describing and supporting the reasoning that each actor goes through 
concerning relationships with other actors. These models have been formalized using intentional 
concepts from artificial intelligence, such as goal, belief, ability, and commitment (e.g., Cohen 
and Levesque, 1990). The framework has been presented in detail (Yu, 1995) and has been related 
to different application areas, including requirements engineering (Yu, 1993), software processes 
(Yu, 1994), and business process reengineering (Yu and Mylopoulos, 1996).

During early requirements analysis, the requirements engineer identifies the domain stakeholders 
and models them as social actors who depend on one another for goals to be fulfilled, tasks to be 
performed, and resources to be furnished. Through these dependencies, one can answer why ques-
tions, besides what and how, regarding system functionality. Answers to why questions ultimately 
link system functionality to stakeholder needs, preferences, and objectives. Actor diagrams and 
rationale diagrams are used in this phase.

An actor diagram is a graph involving actors who have strategic dependencies on each other. A 
dependency represents an “agreement” (called dependum) between two actors: the depender and 
the dependee. The depender depends on the dependee, to deliver on the dependum. The dependum 
can be a goal to be fulfilled, a task to be performed, or a resource to be delivered. In addition, the 
depender may depend on the dependee for a softgoal to be fulfilled. Softgoals represent vaguely 
defined goals, with no clear-cut criteria for their fulfillment. Graphically, actors are represented 
as circles; dependums—goals, softgoals, tasks, and resources—are respectively represented as 
ovals, clouds, hexagons, and rectangles; and dependencies have the form depender → dependum 
→ dependee.

Actor diagrams are extended during early requirements analysis by incrementally adding more 
specific actor dependencies, discovered by a means–ends analysis of each goal. This analysis is 
specified using rationale diagrams. A rationale diagram appears as a balloon within which goals 
of a specific actor are analyzed and dependencies with other actors are established. Goals are de-
composed into subgoals, and positive/negative contributions of subgoals to goals are specified.

During late requirements analysis, the conceptual model developed during early requirements 
is extended to include the system-to-be as a new actor, along with dependencies between this actor 
and others in its environment. These dependencies define functional and nonfunctional requirements 
for the system-to-be. Actor diagrams and rationale diagrams are also used in this phase.

Architectural Design

System architectural design has been the focus of considerable research during the past fifteen 
years that has produced well-established architectural styles and frameworks for evaluating their 
effectiveness with respect to particular software qualities. Examples of styles are pipes-and-filters, 
event-based, layered, control loops, and the like (Shaw and Garlan, 1996). In Tropos, we are in-
terested in developing a suitable set of architectural styles for multi-agent software systems. Since 
the fundamental concepts of a multi-agent system (MAS) are intentional and social, rather than 
implementation-oriented, we turn to theories that study social structures resulting from a design 
process, namely, organization theory and strategic alliances. Organization theory (e.g., Scott, 1998) 
describes the structure and design of an organization; strategic alliances (e.g., Morabito, Sack, 
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and Bhate, 1999) model the strategic collaborations of independent organizational stakeholders 
who have agreed to pursue a set of business goals.

We define an organizational style as a metaclass of organizational structures offering a set of 
design parameters to coordinate the assignment of organizational objectives and processes, thereby 
affecting how the organization itself functions (Kolp, Giorgini, and Mylopoulos, 2003). Design 
parameters include, among others, goal and task assignments, standardization, supervision and 
control dependencies, and strategy definitions.

For instance, structure-in-5 (Mintzberg, 1992) specifies that an organization is an aggregate 
of five substructures. At the base level sits the operational core, which carries out the basic tasks 
and procedures directly linked to the production of products and services (acquisition of inputs, 
transformation of inputs into outputs, distribution of outputs). At the top lies the strategic apex, 
which makes executive decisions ensuring that the organization fulfills its mission in an effec-
tive way and defines the overall strategy of the organization in its environment. The middle line 
establishes a hierarchy of authority between the strategic apex and the operational core. It consists 
of managers responsible for supervising and coordinating the activities of the operational core. 
The technostructure and the support are separated from the main line of authority and influence 
the operating core only indirectly. The technostructure serves the organization by making the 
work of others more effective, typically by standardizing work processes, outputs, and skills. 
It is also in charge of applying analytical procedures to adapt the organization to its operational 
environment. The support provides specialized services, at various levels of the hierarchy, outside 
the basic operating workflow (e.g., legal counsel, research and development, payroll, cafeteria). 
(For further details about architectural styles in Tropos, see Do, Faulkner, and Kolp, 2003; Kolp, 
Giorgini, and Mylopoulos, 2003.)

Styles can be compared and evaluated with quality attributes (Shaw and Garlan, 1996), also 
called nonfunctional requirements (Chung et al., 2000) such as predictability, security, adaptability, 
coordinability, availability, fallibility tolerance, or modularity.

To cope with nonfunctional requirements and select the style for the organizational setting, we 
go through a means–ends analysis using the nonfunctional requirement (NFR) framework (Chung 
et al., 2000). We refine the identified requirements to subrequirements that are more precise and 
evaluate alternative organizational styles against them.

The analysis for selecting an organizational setting that meets the requirements of the system 
to be built is based on propagation algorithms. Basically, the idea is to assign a set of initial labels 
for some requirements of the graph, about their satisfiability and deniability, and to see how this 
assignment leads to the labels propagation for other requirements. In particular, we adopt both a 
qualitative and a numerical axiomatization (Giorgini et al., 2003) for goal (requirements) model-
ing primitives and label propagation algorithms that are shown to be sound and complete with 
respect to their respective axiomatization.

Detailed Design

The detailed design phase is intended to introduce additional detail for each architectural com-
ponent of a system. It consists of defining how the goals assigned to each actor are fulfilled by 
agents with respect to social patterns.

For this step, designers can be guided by a catalogue of multi-agent patterns that offer a set of 
standard solutions. Considerable work has been done in software engineering for defining software 
patterns (see, e.g., Gamma et al., 1995). Unfortunately, little emphasis has been placed on social 
and intentional aspects. Moreover, proposals for agent patterns that do address these aspects (see, 
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e.g., Aridor and Lange, 1998) are not intended for use at a design level. Instead, such proposals 
seem to aim at the implementation phase, when issues such as agent communication, information 
gathering, or connection setup are addressed.

Social patterns in Tropos (Do, Kolp, and Pirotte, 2003) are design patterns focusing on social 
and intentional aspects that are recurrent in multi-agent and cooperative systems. In particular, 
the structures are inspired by the federated patterns introduced in Hayden, Carrick, and Yang, 
(1999) and Kolp, Giorgini, and Mylopoulos (2001). We have classified them into two categories: 
pair and mediation.

The pair patterns—such as booking, call-for-proposal, subscription, or bidding—describe direct 
interactions between negotiating agents. For instance, the bidding pattern involves an initiator and 
a number of participants. The initiator organizes and leads the bidding process, publishes the bid 
to the participants, and receives various proposals. At every iteration, the initiator can accept an 
offer, raise the bid, or cancel the process.

The mediation patterns—such as monitor, broker, matchmaker, mediator, embassy, or wrapper 
—feature intermediary agents that help other agents to reach an agreement on an exchange of 
services. For instance, in the broker pattern, the broker agent is an arbiter and intermediary that 
requests services from a provider to satisfy the request of a consumer.

Detailed design also includes actor communication and actor behavior. To support it, we pro-
pose the adoption of existing agent communication languages like FIPA-ACL (Labrou, Finin, and 
Peng, 1999) or KQML (Finin, Labrou, and Mayfield, 1997), message transportation mechanisms 
and other concepts and tools. One possibility is to adopt extensions to UML (OMG, 1999), such 
as Agent Unified Modeling Language (AUML) (Bauer, Muller, and Odell, 2001; Odell, Van Dyke 
Parunak, and Bauer, 2000) proposed by the Foundation for Physical Intelligent Agents (FIPA, 
2001) and the OMG Agent Work group.

We have also proposed and defined a set of stereotypes, tagged values, and constraints to ac-
commodate Tropos concepts within UML (Mylopoulos, Kolp, and Castro, 2001) for users who 
wish to use UML as the notation in Tropos.

CASE STUDY

Media Shop is a store selling and shipping different kinds of media items such as books, newspa-
pers, magazines, audio CDs, videotapes, and the like. Media Shop customers (on-site or remote) 
can use a periodically updated catalogue describing available media items to specify their order. 
Media Shop is supplied with the latest releases from Media Producer and in-catalogue items by 
Media Supplier. To increase market share, Media Shop has decided to open up a B2C (business 
to consumer) retail sales front on the Internet. With the new setup, a customer can order Media 
Shop items in person, by phone, or through the Internet. The system has been Medi@ and is avail-
able on the World Wide Web using communication facilities provided by Telecom Cpy. It also 
uses financial services supplied by Bank Cpy, which specializes in online transactions. The basic 
objective for the new system is to allow an online customer to examine the items in the Medi@ 
Internet catalogue and place orders. The main interface of the system is shown in Figure 7.1.

There are no registration restrictions or identification procedures for Medi@ users. Potential 
customers can search the online store by either browsing the catalogue or querying the item data-
base. The catalogue groups media items of the same type into (sub)hierarchies and genres (e.g., 
audio CDs are classified into pop, rock, jazz, opera, world, classical music, soundtrack, etc.) so that 
customers can browse only (sub)categories of interest. An online search engine allows customers 
with particular items in mind to search title, author/artist, and description fields through keywords 



102     Giorgini,  Kolp,  and  Mylopoulos

or full-text search. If the item is not available in the catalogue, the customer has the option of 
asking Media Shop to order it, provided the customer has editor/publisher references (e.g., ISBN, 
ISSN), and identifies him/herself (in terms of name and credit card number). Details about media 
items include title, media category (e.g., book) and genre (e.g., science-fiction), author/artist, short 
description, editor/publisher international references and information, date, cost, and sometimes 
pictures (when available).

EARLY REQUIREMENTS ANALYSIS

The elements described in the previous section are sufficient for producing a first model of an 
organizational environment. For instance, Figure 7.2 depicts the actor diagram of our Medi@ 
example. The main actors are Customer, Media Shop, Media Supplier, and Media Producer. 
Customer depends on Media Shop to fulfill his/her goal: Buy Media Items. Conversely, Media 
Shop depends on Customer to increase market share and make.” Since the dependum Happy 
Customers cannot be defined precisely, it is represented as a softgoal. The Customer also depends 
on Media Shop to consult the catalogue (task dependency). Furthermore, Media Shop depends 
on Media Supplier to supply media items in a continuous way and get a Media Item (resource 
dependency). The items are expected to be of good quality because, otherwise, the Continuing 
Business dependency would not be fulfilled. Finally, Media Producer is expected to provide Media 
Supplier with Quality Packages.

Figure 7.1  Interface of the System
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Figure 7.3 focuses on one of the (soft)goal dependencies identified for Media Shop, namely, 
Increase Market Share. To achieve that softgoal, the analysis postulates a goal Run Shop that can 
be fulfilled by means of a task Run Shop. Tasks are partially ordered sequences of steps intended 
to accomplish some (soft)goal. In Tropos, tasks can be decomposed into subtasks but also goals, 
whose collective fulfillment completes the task. In Figure 7.3, Run Shop is decomposed into goals 
Handle Billing and Handle Customer Orders, tasks Manage Staff and Manage Inventory, and 
softgoal Improve Service, which together accomplish the top-level task. Subgoals and subtasks can 
be specified more precisely through refinement. For instance, the goal Handle Customer Orders 
is fulfilled either through tasks Order By Phone, Order In Person, or Order By Internet, while 
the task Manage Inventory would be collectively accomplished by tasks Sell Stock and Enhance 
Catalogue. These decompositions eventually allow us to identify actors who can accomplish a 
goal, carry out a task, or deliver some needed resource for Media Shop. Such dependencies in 
Figure 7.3 are, among others, the goal and resource dependencies on Media Supplier for supplying, 
in a continuous way, media items to enhance the catalogue and sell products, the softgoal depen-
dencies on Customer for increasing market share (by running the shop) and making customers 
happy (by improving service), and the task dependency Accounting on Bank Cpy to keep track 
of business transactions.

LATE REQUIREMENTS ANALYSIS

For our example, the Medi@ system is viewed as a fully fledged actor in the actor diagram depicted 
in Figure 7.4. With respect to the actors previously identified, Customer depends on Media Shop 
to buy media items while Media Shop depends on Customer to increase market share and make 
customers happy (with Media Shop service). Media Supplier is expected to supply Media Shop 
with media items in a continuous way since it depends on the latter for continuing business. It can 
also use Medi@ to determine new needs from customers, such as media items not available in the 
catalogue, while expecting Media Producer to provide him/her with quality packages. As indicated 
earlier, Media Shop depends on Medi@ to process Internet orders and on Bank Cpy to process 
business transactions. Customer, in turn, depends on Medi@ to place orders through the Internet, 
to search the database for keywords, or simply to browse the online catalogue. With respect to 
relevant qualities, Customer requires that transaction services be secure and available, while Media 

Figure 7.2  Actor Diagram for a Media Shop
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Shop expects Medi@ to be easily adaptable (e.g., catalogue enhancing, item database evolution, 
user interface update, etc.). Finally, Medi@ relies on Internet services provided by Telecom Cpy 
and on secure online financial transactions handled by Bank Cpy.

Although an actor diagram provides hints about why processes are structured in a certain way, 
it does not sufficiently support the process of suggesting, exploring, and evaluating alternative 
solutions. As late requirements analysis proceeds, Medi@ is given additional responsibilities 
and ends up as the dependee of several dependencies. Moreover, the system is decomposed into 
several subactors, which take on some of these responsibilities. This decomposition and respon-
sibility assignment is realized using the same kind of means–ends analysis as that illustrated in 
Figure 7.3. Hence, the analysis in Figure 7.5 focuses on the system itself, instead of an external 
stakeholder.

Figure 7.5 postulates a root task Internet Shop Managed providing sufficient support (++) 
(Chung et al., 2000) to the softgoal Increase Market Share. That task is first refined into goals 
Internet Orders Handled and Item Searching Handled, softgoals Attract New Customer, Secure, 
and Available, and tasks Produce Statistics and Adaptation. To manage Internet orders, Internet 
Orders Handled is achieved through the task Shopping Cart, which is decomposed into subtasks 

Figure 7.3  Means–Ends Analysis for the Softgoal Increase Market Share
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Select Item, Add Item, Check Out, and Get Identification Detail. These are the main process ac-
tivities required to design an operational online shopping cart (Conallen, 1999). The latter task 
is achieved either through subgoal Classic Communication Handled, dealing with phone and fax 
orders, or Internet Handled, managing secure or standard form orderings. To allow for the order-
ing of new items not listed in the catalogue, Select Item is also further refined into two alternative 
subtasks, one dedicated to the selection of catalogued items, the other to backordering unavailable 
products. To provide sufficient support (++) to the Adaptable softgoal, Adaptation is refined into 
four subtasks dealing with catalogue updates, system evolution, interface updates, and system 
monitoring. The goal Item Searching Handled might alternatively be fulfilled through the tasks 
Database Querying or Catalogue Consulting with respect to customers’ navigating desiderata, 
that is, searching with particular items in mind by using search functions or simply browsing the 
catalogued products.

In addition, as already pointed out, Figure 7.5 introduces softgoal contributions to model sufficient/
partial positive (respectively ++ and +) or sufficient/partial negative (respectively – – and –) support 
to softgoals Secure, Available, Adaptable, Attract New Customers, and Increase Market Share. 
The result of this means–ends analysis is a set of (system and human) actors who are dependees 
for some of the dependencies that have been postulated.

Figure 7.4  Refined Actor Diagram for Media Shop
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Resource, task, and softgoal dependencies correspond naturally to functional and nonfunctional 
requirements. Leaving (some) goal dependencies between system actors and other actors is a nov-
elty. Traditionally, functional goals are “operationalized” during late requirements (Dardenne, van 
Lamsweerde, and Fickas, 1993), while quality softgoals are either operationalized or “metricized” 
(Davis, 1993). For example, Billing Processor may be operationalized during late requirements 

Figure 7.5  Rationale Diagram for Medi@
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analysis into particular business processes for processing bills and orders. Likewise, a security 
softgoal might be operationalized by defining interfaces that minimize input/output between the 
system and its environment, or by limiting access to sensitive information. Alternatively, the 
security requirement may be metricized into something such as “No more than X unauthorized 
operations in the system-to-be per year.”

Leaving goal dependencies with system actors as dependees makes sense whenever there is a 
foreseeable need for flexibility in the performance of a task on the part of the system. For example, 
consider a communication goal “communicate X to Y.” According to conventional development 
techniques, such a goal needs to be operationalized before the end of late requirements analysis, 
perhaps into some sort of a user interface through which user Y will receive message X from the 
system. The problem with this approach is that the steps through which this goal is to be fulfilled 
(along with a host of background assumptions) are frozen into the requirements of the system-to-
be. This early translation of goals into concrete plans for their fulfillment makes systems fragile 
and less reusable.

In our example, we have left three (soft)goals (Availability, Security, Adaptability) in the late 
requirements model. The first goal is Availability because we propose to allow system agents to 
automatically decide at run-time which catalogue browser, shopping cart, and order processor 
architecture best fit customer needs or navigator/platform specifications. Moreover, we would 
like to include different search engines, reflecting different search techniques, and let the sys-
tem dynamically choose the most appropriate. The second key softgoal in the late requirements 
specification is Security. To fulfill this, we propose to support a number of security strategies in 
the system’s architecture and let the system decide at run-time which one is the most appropri-
ate, taking into account environment configurations, Web browser specifications, and network 
protocols used. The third goal is Adaptability, meaning that catalogue content, database schema, 
and architectural model can be dynamically extended or modified to integrate new and future 
Web-related technologies.

ARCHITECTURAL DESIGN

Figure 7.6 suggests a possible assignment of system responsibilities for Medi@ following the 
structure-in-5 style (Do, Faulkner, and Kolp, 2003). It is decomposed into five principal actors: 
Store Front, Coordinator, Billing Processor, Back Store, and Decision Maker. Store Front serves 
as the Operational Core. It interacts primarily with Customer and provides him/her with a us-
able front-end Web application for consulting and shopping media items. Back Store constitutes 
the Support component. It manages the product database and communicates to the Store Front 
information on products selected by the user. It stores and backs up all Web information from the 
Store Front about customers, products, sales, orders, and bills to produce statistical information 
to the Coordinator. It provides the Decision Maker with strategic information (analyses, historical 
charts, and sales reports).

The Billing Processor is in charge of handling orders and bills for the Coordinator and imple-
menting the corresponding procedures for the Store Front. It also ensures the secure management 
of financial transactions for the Decision Maker. As the Middle Line, the Coordinator assumes the 
central position of the architecture. It ensures the coordination of e-shopping services provided 
by the Operational Core, including the management of conflicts between itself, the Billing Pro-
cessor, the Back Store, and the Store Front. To this end, it also handles and implements strategies 
to manage and prevent security gaps and adaptability issues. The Decision Maker assumes the 
Strategic Apex role. To this end, it defines the Strategic Behavior of the architecture ensuring that 
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objectives and responsibilities delegated to the Billing Processor, Coordinator, and Back Store 
are consistent with that global functionality.

Three software quality attributes have been identified as being particularly strategic for e-
business systems (Do, Faulkner, and Kolp, 2003).

Adaptability

Adaptability deals with the way the system can be designed using generic mechanisms to allow 
Web pages to be dynamically changed. It also concerns the catalogue update for inventory con-
sistency.

The structure-in-5 separates each typical component of the Medi@ architecture, isolating one 
from the other and allowing dynamic manipulation.

Security

Clients, exposed to the Internet are, like servers, at risk in Web applications. It is possible for Web 
browsers and application servers to download or upload content and programs that could open up 
the client system to crackers and automated agents. JavaScript, Java applets, ActiveX controls, and 

Figure 7.6  The Medi@ Architecture in Structure-in-5
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plug-ins represent a certain risk to the system and the information it manages. Equally important 
are the procedures checking the consistency of data transactions.

In the structure-in-5, checks and control mechanisms can be integrated at different levels assum-
ing redundancy from different perspectives. Contrary to the classical layered architecture (Shaw 
and Garlan, 1996), checks and controls are not restricted to adjacent levels. Besides, since the 
structure-in-5 permits the separation of process (Store Front, Billing Processor, and Back Store) 
from control (Decision Maker and Monitor), security and consistency of these two hierarchies 
can also be verified independently.

Availability

Network communication may not be very reliable, which can cause sporadic loss of the server. 
There are data integrity concerns about the capability of the e-business system to do what needs 
to be done, as quickly and efficiently as possible, in particular about the ability of the system to 
respond in time to client requests for its services.

The structure-in-5 architecture prevents availability problems by differentiating process from 
control. Besides, contrary to the classical layered architecture (Shaw and Garlan, 1996), higher 
levels are more abstract than lower levels: lower levels only involve resources and task dependen-
cies while higher ones propose intentional (goals and softgoals) relationships.

DETAILED DESIGN

Figure 7.7 shows a possible use of the patterns for the Store Front component of the e-business 
system of Figure 7.6. In particular, it shows how to realize the dependencies Manage Catalogue 
Browsing, Update Information, and Product Information from the point of view of the Store Front. 
The Store Front and the dependencies are decomposed into a combination of social patterns (Do, 
Kolp, and Pirotte, 2003) involving agents, pattern agents, subgoals, and subtasks.

The booking pattern is applied between the Shopping Cart and the Information Broker to re-
serve available items. The broker pattern is applied to the Information Broker, which satisfies the 
Shopping Cart’s requests for information by accessing the Product Database. The Source Match-

Figure 7.7  Decomposing the Store Front with Social Patterns
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maker applies the matchmaker pattern to locate the appropriate source for the Information Broker, 
and the monitor pattern is used to check any possible change in the Product Database. Finally, 
the mediator pattern is applied to dispatch the interactions between the Information Broker, the 
Source Matchmaker, and the Wrapper, while the wrapper pattern forms the interaction between 
the Information Broker and the Product Database.

Figure 7.8 shows the remote administrative tool for the information broker of Figure 7.7. The 
customer sends a service request to the broker requesting the buying or selling of DVDs. He/she 
chooses which DVDs to sell or buy, selects the corresponding DVD titles, the quantity and the 
deadline (the timeout before which the broker has to realize the requested service). When receiv-
ing the customer’s request, the broker interacts with the media shops. The interactions between 
the broker and the media shops are shown in the bottom-right corner of the figure.

To go deeper into the details, the rest of the section concentrates only on the Store Front ac-
tor. Figure 7.9 depicts a partial, extended UML class diagram (Castro, Kolp, and Mylopoulos, 
2002) focusing on the actor that will be implemented as an aggregation of several CartForms and 
ItemLines.

To specify the checkout operation identified in Figure 7.9, extensions of interaction diagrams 
(Castro, Kolp, and Mylopoulos, 2002) allow us to use templates and packages to represent checkout 
as an object, as well as in terms of sequence and collaborations diagrams.

Figure 7.10 focuses on the protocol between Customer and Shopping Cart, which consists of a 
customization of the FIPA Contract Net Protocol (Odell, Van Dyke Parunak, and Bauer, 2000). Such 
a protocol describes a communication pattern among actors as well as constraints on the contents of 
the messages they exchange. When a Customer wants to check out, a request-for-proposal message 

Figure 7.8  The Information Broker of Medi@
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is sent to Shopping Cart, which must respond before a given timeout (for network security and 
integrity reasons). The response may refuse to provide a proposal, submit a proposal, or express 
miscomprehension. The diamond symbol with an “X” indicates an “exclusive or” decision. If a 
proposal is offered, Customer has a choice of either accepting or canceling the proposal.

At the lowest level, we use plan diagrams (Kinny and Georgeff, 1996) to specify the internal 
processing of atomic actors. Each identified plan is specified as a plan diagram, which is denoted 
by a rectangular box. The lower section, the plan graph, is a state transition diagram. However, 
plan graphs are not just descriptions of system behavior developed during design. Rather, they 
are directly executable prescriptions of how a BDI (belief-desire-intention) agent should behave 
(execute identified plans) in order to achieve a goal or respond to an event.

The initial transition of the plan diagram is labeled with an activation event (Press checkout 
button) and activation condition ([checkout button activated]), which determine when and in what 
context the plan should be activated. Transitions from a state automatically occur when exiting 
the state and no event is associated (e.g., when exiting Fields Checking) or when the associated 
event occurs (e.g., Press cancel button), provided in all cases that the associated condition is true 
(e.g., [Mandatory fields filled]). When the transition occurs, any associated action is performed 
(e.g., verifyCC()).

The elements of the plan graph are three types of node: start states, end states, and inter-
nal states; and one type of directed edge: transitions. Start states are denoted by small filled 
circles. End states may be pass-or-fail states, denoted respectively by a small target or a small 
no-entry sign. Internal states may be passive or active. Passive states have no substructure and 
are denoted by a small open circle. Active states have an associated activity and are denoted by 
rectangular boxes with rounded corners. An important feature of plan diagrams is their notion 
of failure. Failure can occur when an action upon a transition fails, when an explicit transition 

Figure 7.9  Partial Class Diagram for Store Front
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to a fail state occurs, or when the activity of an active state terminates in failure and no outgo-
ing transition is enabled.

Figure 7.11 depicts the plan diagram for Checkout, triggered by pushing the checkout button. 
Mandatory fields are first checked. If any mandatory fields are not filled, an iteration allows the 
customer to update them. For security reasons, the loop exits after five tries ([I<5]) and causes 
the plan to fail. Credit Card (CC) validity is then checked. Again for security reasons, when not 
valid, the CC# can be corrected only three times. Otherwise, the plan terminates in failure. The 
customer is then asked to confirm the CC# to allow item registration. If the CC# is not confirmed, 
the plan fails. Otherwise, the plan continues: each item is iteratively registered, final amounts are 
calculated, stock records and customer profiles are updated, and a report is displayed. When finally 
the whole plan succeeds, the Shopping Cart automatically logs out and asks the Order Processor 
to initialize the order. When, for any reason, the plan fails, the Shopping Cart automatically logs 
out. At any time, if the cancel button is pressed, or the timeout is more than ninety seconds (e.g., 
due to a network bottleneck), the plan fails and the Shopping Cart is reinitialized.

From the above case study, we understand that Tropos insists on requirements phases, especially 
early requirements analysis through goals and social dependencies elicitation. While Tropos focuses 
on organizational and intentional modeling, useful when analyzing agent-oriented information 
systems, it does not really focus on the process and workflow modeling usually needed for devel-
oping business systems such as enterprise resource planning packages. Moreover, Tropos does not 
propose specific models for detailed design. Instead, the methodology reuses UML-based agent 
design models. The methodology is so far not really usable for project software management since 
it does not include cost estimation models or iterative process.

Figure 7.10  Agent Interaction Protocol Focusing on a Checkout Dialogue
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RELATED WORK

The most important feature of the Tropos methodology is that it aspires to span the overall software 
development process, from early requirements to implementation. Figure 7.12 shows graphically 
the relative coverage of the software development process by Tropos and other methodologies, 
including KAOS (Dardenne, van Lamsweerde, and Fickas, 1993), Gaia (Wooldridge, Jennings, 
and Kinny, 2000), AAII (Kinny, Georgeff, and Rao, 1996), MaSE (Deloach, Wood, and Sparkman 
2001), and AUML (Bauer, Muller, and Odell, 2001). Other agent-oriented software development 
methodologies have been proposed as well (see, e.g., Brazier et al., 1997; Ciancarini and Wool-
dridge, 2001; Wooldridge, Ciancarini, and Weiss, 2002).

While Tropos covers all software development phases, at the same time it is well integrated with 
other existing work. Thus, for early and late requirements analysis, it adapts ideas from requirements 
engineering, and in particular Eric Yu’s i* methodology (Yu, 1995). During design phases, UML 
(Booch, Rumbaugh, and Jacobson, 1999) and AUML (Bauer, Muller, and Odell, 2001) concepts 
are used to model and analyze static and dynamic aspects of a software system design.

The Tropos metamodel presented in Bresciani and colleagues (2004) has been developed 
in the same spirit as the UML metamodel for class diagrams. A comparison between the two 
metamodels readily points out fundamental differences between the primitive concepts ad-
opted by the two modeling frameworks. This contrast also defines the key difference between 
object-oriented and agent-oriented development methodologies. Agents (and actor diagrams) 
cannot be thought of as specializations of objects (and class diagrams), as argued elsewhere. 
The Tropos modeling framework supports the process of modeling and analyzing social and 
intentional settings. UML was designed to support modeling and analysis of static and dy-
namic settings. In that sense, the two approaches (a) give designers very different concepts 

Figure 7.11  A Plan Diagram for Checkout

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()



114     Giorgini,  Kolp,  and  Mylopoulos

for conceptualizing an application; (b) offer different sets of questions to be asked in building 
models for that application; and (c) offer different tools to support various forms of analysis 
for these models.

CONCLUSIONS

We have presented the Tropos methodology for developing agent-oriented information systems. 
The methodology is particularly appropriate for generic, component-based software for e-business 
applications that can be downloaded and used in a variety of operating environments and com-
puting platforms. The methodology is currently supported by a range of formal analysis tools 
(www.troposproject.org), and its application is being explored along a number of fronts: design 
of Web services and business processes (Lau and Mylopoulos, 2004), design of autonomic soft-
ware (Lapouchnian et al., 2005), and also design of Web sites and user interfaces (Bolchini and 
Mylopoulos, 2003).

Tropos is founded on intentional and social concepts inspired by early requirements analysis. 
The modeling framework views software from five complementary perspectives:

•	 Social—who are the relevant actors and what do they want? What are their obligations? 
What are their capabilities?

•	 Intentional—what are the relevant goals and how do they interact? How are they being 
fulfilled, and by whom?

•	 Communicational—how do actors communicate with each other to fulfill their goals?
•	 Process-oriented—what are the relevant business/computer processes? Who is responsible 

for what?
•	 Object-oriented—what are the relevant objects and classes, along with their interrelation-

ships?

Figure 7.12  Comparison of Different Software Development Methodologies
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The requirements-driven approach, on which Tropos is based, suggests that the methodology 
favorably complements proposals for agent-oriented programming environments (Castro, Kolp, 
and Mylopoulos, 2002; Bresciani et al., 2004) given that—according to Tropos—software is 
conceived in terms of (system) actors, goals, and social dependencies among them. Moreover, 
it does not force the developer to operationalize these intentional and social structures early on 
during the development process, thereby avoiding the hardwiring of solutions into software 
requirements.

Clearly, Tropos is not the right methodology for developing any kind of software. For system 
software (such as compilers and operating systems) or embedded software, the operating envi-
ronment of the system-to-be is an engineering artifact, with no identifiable stakeholders. In such 
cases, traditional software development techniques may be most appropriate. However, a large 
and growing percentage of software systems today operate within open, dynamic organizational 
environments. For such software, the Tropos methodology and others in the same family apply and 
promise to deliver more robust, reliable, and usable software systems. The Tropos methodology in 
its current form is also not suitable for sophisticated software agents requiring advanced reasoning 
mechanisms for plans, goals, and negotiations. Further extensions will be required, mostly at the 
detailed design phase, to address this class of software applications.

Much remains to be done to further refine the proposed design framework and validate its 
usefulness with large case studies. We are currently working on the development of additional 
formal analysis techniques for Tropos, including goal and social network analysis. We are also 
developing tools that support different phases of the methodology.
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Chapter 8

AGENT-ORIENTED METHODS  
AND METHOD ENGINEERING

Brian Henderson-Sellers

Abstract: Agent-oriented (AO) methodologies vary in style and, particularly, in heritage and often 
with a specific focus (either in terms of domain, application style, or life-cycle coverage). For 
industry adoption it is essential that full life-cycle coverage is achieved in a “standardized” way. 
One way of achieving some degree of standardization yet maintaining full flexibility is through 
the application of situational method engineering to the creation of agent-oriented methodolo-
gies. With this approach, method fragments are created and stored in a repository. Whenever a 
methodology is needed, a subset of these is then selected from the repository and a project-specific 
(or sometimes organization-specific) AO methodology is constructed. Here, we demonstrate how 
this might work by using the OPEN Process Framework (OPF) approach.

Keywords: Agents, Situational Method Engineering, Software Engineering, OPEN Process Frame-
work (OPF), Methodologies

INTRODUCTION

To support the development of agent-oriented (AO) software systems, an appropriate method(ology)1 
is needed. Of the many AO methodologies in existence today, many show influences from earlier 
object-oriented methodological approaches and methodological thinking.

In this chapter, we describe briefly a number of contemporary AO methodological approaches 
and examine their evolution from and their relationship to earlier object-oriented (OO) method-
ologies. We then introduce the suggestion that a better approach than attempting to create a “one-
size-fits-all” AO methodology is based on the ideas of situational method engineering (SME) and 
then illustrate this proposal with a brief case study.

It should be noted in passing that, while in most cases the meaning of “AO” in the term 
“agent-oriented methodology” means a methodology to be used for building agent-oriented 
software systems, some authors (e.g., Bresciani et al., 2004) use the term to mean that agent-
related concepts are used in the conceptual underpinning of the methodology itself. Furthermore, 
although we use the term “methodology” in this chapter to mean a full description of process, 
people, social structures, project management, modeling language, products, and so on (e.g., 
Henderson-Sellers, 1995; Rolland and Prakash, 1996), some of the (so-called) methodologies 
referred to here provide only partial support—perhaps only in terms of addressing analysis and 
design (as does Gaia—e.g., Wooldridge, Jennings, and Kinny, 2000) or omitting any discussion 
of the “people element,” for instance, MaSE (DeLoach, 1999) or AOR (Wagner, 2004), the latter 
being primarily a modeling language.
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AGENT-ORIENTED METHODOLOGIES

A Genealogy of Agent-Oriented Methodologies

The development of AO methodologies has taken many routes. Some methodologists have based 
their methodological approach on Artificial Intelligence (AI) or Knowledge Representation ideas; 
others have commenced with basic definitions of objects and then asked what modifications are 
necessary to support agents; others have commenced with an established OO methodology and 
asked how agent support can be grafted on.

Figure 8.1 graphically depicts some of these linkages and influences. OO methodologies such 
as the Rational Unified Process (RUP) (Kruchten, 1999), the Object Modeling Technique (OMT) 
(Rumbaugh et al., 1991), and Fusion (Coleman et al., 1994) have all been used by various AO 
methodology groups as the basis for agent-oriented extensions. RUP has formed the basis for 
Adelfe (Bernon et al., 2002) and also for MESSAGE (Caire et al., 2001), which, in turn, is the 
basis for INGENIAS (Pavón, Gomez-Sanz, and Fuentes, 2005), and, more recently, RUP has been 
a useful input to the Radical Agent-oriented Process (RAP) (Wagner and Taveter, 2005), a direct 
descendant of Agent-Object-Relationship (AOR) (Wagner, 2003). OMT is said to have directly 
influenced MAS-CommonKADS (Iglesias et al., 1996, 1998), which merges these OO ideas with 
concepts from AI and Knowledge Engineering, as well as the AAII approach (Kinny, Georgeff, 
and Rao, 1996), which, in turn, is said to have been a major influence on MaSE (DeLoach, 1999; 
Wood and DeLoach, 2000). Fusion has strongly influenced Gaia, which, in turn, has influenced 
SODA (Omicini, 2000). ROADMAP (Juan, Pearce, and Sterling, 2002) is an extension of Gaian 
ideas. Prometheus (Padgham and Winikoff, 2002a, 2002b) is a fully AO methodology but states 
that one should use UML-style diagrams when appropriate rather than “reinvent the wheel.” All of 
these AO methodologies are “standalone”—effectively “one size fits all”—approaches, although 
some mergers are currently being initiated (e.g., between ROADMAP and Prometheus). Care 
must, however, be taken when merging methodologies, since this can lead to an excessively large 
(sometimes implicit) and partially redundant metamodel.

Other methodologies in Figure 8.1 do not acknowledge any influence from any OO approach—
although clearly some have had an implicit influence. Tropos is said to be based on i* (Yu, 1995) 
and has a distinct strength in early requirements modeling. Its use of the i* modeling language gives 
it a different look and feel from those that use Agent UML (AUML); (Odell, Van Dyke Parunak, 
and Bauer, 2000) as a notation. It also means that the non-OO mindset permits users of Tropos to 
take a unique approach to the modeling of agents in the methodological context.

There is no obvious, explicit evidence of an OO influence in the published versions of Cassiopeia 
(Collinot and Drogoul, 1998; Collinot, Drogoul, and Benhamou, 1996), the earlier versions of 
PASSI (Burrafato and Cossentino, 2002; Cossentino and Potts, 2002),2 and the work of Kendall, 
Malkoun, and Jiang (1996). CAMLE (Shan and Zhu, 2004) does, however, draw some parallels, 
particularly between a CAMLE caste and an OO class and with respect to UML’s composition 
and aggregation relationships.

Synopsis of Specific Agent-Oriented Methodologies

As noted above, many individualistic methodologies have been formulated and published. Here, 
we briefly review a small selection. Each description below emphasizes the agent-oriented aspects 
of that methodology, which are needed to go beyond the basic object-oriented concepts that many 
of them utilize.
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There are several AO methods acknowledging an OO influence, either from OMG, RUP, or 
OPEN (the last of these is discussed in more detail below).

MaSE (DeLoach, 1999; Wood and DeLoach, 2000) is drawn from the legacy of object-oriented 
methodologies such as OMT together with influences from the more recent UML as well as pre-
existing work in the realm of agents and multi-agent systems (e.g., Kinny, Georgeff, and Rao, 
1996; Kendall and Zhao, 1998). It aims to guide the designer through the multi-agent system 
development process from an initial system specification to a set of formal design documents. It 
has two phases: analysis and design. The former deals with the specification of system goals, use 
cases, sequence diagrams, roles, and tasks, while the latter uses the analysis phase’s outputs to 
design agent classes, agent interactions, and agents’ internal components. It is also well supported 
by a software tool. Another input to MaSE (Figure 8.1) is the work of Zhang, Kendall, and Jiang 
(2002) (referred to hereafter as the ZKJ methodology). The ZKJ methodology focuses on the iden-
tification of goals and roles. It represents the process by a set of ten “activities,” each having an 
input, an output, a control, and a mechanism. Four of these activities (Identify actors, Identify use 
cases, Identify objects, and Determine business objects) are grouped as “object-oriented analysis 
activities,” the rest being focused on agent goals and roles. There are six activities focused on 
roles and goals (Identify goals, Develop goal cases, and Identify beliefs, Identify roles, Assign 
goals to responsibilities, Assign and compose roles, and Identify composite roles). Indeed, role 
identification is an important activity in the ZKJ methodology. Roles are seen as able to execute 
a set of activities in order to fulfill one or more responsibilities.

OO

RUP/UP OMT Fusion OPEN

AAII Gaia

MESSAGE Adelfe

MaSE

SODA

CAMLE

Agent Factory

Cassiopeia

Kendall 
et al.

i*

Tropos

Agent OPEN

PASSI

AOR

RAP

Prometheus

INGENIAS

MAS-CommonKADS
(+AI/KE)

ROADMAP

Figure 8.1	 Genealogy of Various Agent-Oriented Methodologies and Their Relationships to 
Object-Oriented Methodologies

Source: Modified from Henderson-Sellers (2005).



AGENT-ORIENTED  METHODS  AND  METHOD  ENGINEERING     121

Although influenced by OMT, MAS-CommonKADS (Iglesias et al., 1998) also has strong AI/
knowledge engineering influences (CommonKADS: Schreiber et al., 1994). It is an agent-oriented 
methodology that supports the development of MAS from the conceptualization phase through 
to a detailed design that can be directly implemented. The main modeling concepts in MAS-
CommonKADS are agent, knowledge, organization, and coordination.

Being based to some degree on ideas in the OO Fusion methodology, itself based in part on 
OMT, Gaia (Wooldridge, Jennings, and Kinny, 2000) views the process of multi-agent system 
(MAS) development as a process of organizational design, where the MAS is modeled as an or-
ganized society with agents playing different roles. The methodology allows a developer to move 
systematically from a statement of requirements to a design detailed enough to be implemented 
directly. It supports both macro (societal) and micro (agent) aspects of MAS design, and is also 
neutral to both application domain and agent architecture. The newest version of Gaia (Zambo-
nelli, Jennings, and Wooldridge, 2003) extends the original version with various organizational 
abstractions, enabling it to be used for the design of an open MAS (which was not achievable 
previously). Another AO methodology said to extend Gaia is Societies in Open and Distributed 
Agent spaces (SODA; Omicini, 2000). As its name implies, it focuses on societal descriptions 
of multi-agent systems, especially Internet-based applications. SODA concentrates on interagent 
issues and leaves the developer to choose his/her own internal agent model. Also initially influ-
enced strongly by Gaia is Role-Oriented Analysis and Design for Multi-Agent Programming 
(ROADMAP; Juan, Pearce, and Sterling, 2002; Juan and Sterling, 2003). It introduces into Gaia 
UML-style use cases for requirements gathering, explicit models of the agent environment, and 
agent knowledge together with an interaction model based on AUML (Odell, Van Dyke Parunak, 
and Bauer, 2000). ROADMAP draws a clear distinction between analysis and design with a focus 
on roles and goals (as do many other AO methodologies).

A group of AO methods have been influenced by RUP (Kruchten, 1999) rather than the older 
OMT. These include MESSAGE, INGENIAS, Adelfe, and AOR/RAP. MESSAGE (e.g., Garijo, 
Gomez-Sanz, and Fuentes, 2005) arose from the needs of the telecommunications industry. It is 
said to extend UML to cover analysis and design considerations, adding agent-specific concepts 
to describe organizations, roles, goals, and tasks. INGENIAS (Pavón, Gomez-Sanz, and Fuentes, 
2005) builds on the ideas of MESSAGE, focusing on five views: organization, agent, goals/tasks, 
interactions, and environment. These viewpoints are then complemented by the use of extensions 
of OO notations such as UML. The process elements in INGENIAS are based on those in the 
UDP (Jacobson, Booch, and Rumbaugh, 1999). A set of interrelated activities (approximately 
100) are then defined, which assist the developer in creating the final MAS specification. Also 
using RUP as a basic input, RAP (Taveter and Wagner, 2005) uses the AOR notation of Wagner 
(2003). Its focus is business processes that emerge as social interactions from the behavior of the 
participating agents.

Although also using many RUP-like ideas, Adelfe (e.g., Bernon et al., 2002, 2005; Piquemal-
Baluard et al., 1996) is aimed at a very different kind of AO system than most other AO meth-
odologies. Adelfe is primarily intended to be used for the development of adaptive multi-agent 
software applications. It tailors RUP and introduces its phases as either WorkDefinitions (WDi), 
Activities (Aj) or Steps (Sk) following the vocabulary of the OMG’s Software Processing Engi-
neering Metamodel (SPEM) (OMG, 2002), which has been used to underpin Adelfe.

There are a number of AO methods that offer only a passing acknowledgment to OO. These 
include PASSI and Prometheus. PASSI (Process for Agent Societies Specification and Implementa-
tion) (Burrafato and Cossentino, 2002; Cossentino, 2005) offers a step-by-step requirement-to-code 
process for the development of a MAS (Figure 8.1), integrating models and concepts from both 
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the object-oriented software engineering and the agent-oriented paradigms. The methodology 
adopts (and largely extends/adapts) the UML notation for its work products and targets the FIPA 
implementation environment. Prometheus (Padgham and Winikoff, 2002a, 2002b, 2004), on the 
other hand, is an agent-oriented methodology that reuses elements from object technology only as 
appropriate, including several UML diagram types. There are three phases of systems specifica-
tion. In the first phase, the basic functionality of the system is identified, using percepts (inputs), 
actions (outputs), and any necessary shared data storage. This is followed by the architectural 
design stage; here, the agents and their interactions are identified. Finally, there is the detailed 
design phase in which the internal details of each agent are addressed.

From the published literature, it is not possible to identify any direct influences from OO 
methods (although, of course, some may exist implicitly) for Cassiopeia, CAMLE, and Agent 
Factory (Figure 8.1). Cassiopeia (Collinot, Drogoul, and Benhamou, 1996) provides an (argu-
ably incomplete) methodological framework for the development of collective problem-solving 
MASs. This method assumes that, although the agents can have different aims, the goal of the 
designer is to make them behave cooperatively. It adopts an organization-oriented approach to 
MAS design, as do some other AO approaches, viewing a MAS as an organization of agents that 
implement/encapsulate roles. These roles reflect not only the agents’ individual functionality but 
also the structure and dynamics of the organization of the MAS. CAMLE (Shan and Zhu, 2004) is 
described as a caste-centric agent-oriented modeling language and environment. It is caste-centric 
because castes, analogous to classes in object-orientation, are argued to provide the major model-
ing artifact over the life cycle by providing a type system for agents. A significant difference is 
claimed between castes and classes: while objects are commonly thought of as statically classified 
(i.e., an object is created as a member of a class, and that is a property for its whole lifetime), 
agents in CAMLE can join and leave castes as desired, thus allowing dynamic reclassification. 
CAMLE provides a graphical notation for caste models (similar to class models in OO modeling 
languages), collaboration models, and behavior models. Caste diagrams also include support for 
the non-OO relationships of congregation, migration, and participation. CAMLE relies heavily 
on the fact that an information system already exists when a new project is started, so that the 
new system is designed as a modification to the current one. Although this situation is indeed 
common, the construction of systems from scratch also happens. CAMLE, however, seems to 
ignore this possibility. Finally, in this group, Agent Factory (Collier et al., 2003, 2004) offers a 
four-layer framework for designing, implementing, and deploying multi-agent systems. It con-
tains (1) an agent-oriented software engineering methodology, (2) a development environment, 
(3) a FIPA-compliant run-time environment, and (4) an agent programming language (AF-APL); 
with a stated preference for the belief-desire-intention (BDI) agent architecture according to the 
analysis of Luck, Ashri, and D’Inverno (2004). By employing UML and Agent UML, the Agent 
Factory methodology provides a visual, industry-recognized notation for its models—regarded 
by its authors as a major advantage over other approaches, such as Gaia (Wooldridge et al., 2000) 
and Tropos (Bresciani et al., 2004), which have nonstandard (i.e., non–UML-compliant) notations. 
These models are capable of promoting design reuse (via the central notion of role) and being 
directly implemented by automated code generation (Collier et al., 2004).

In a slightly different class, Tropos (Bresciani et al., 2004; Castro, Kolp, and Mylopoulos, 2002; 
Perini et al., 2001) uses agent, rather than object, concepts and was designed to support agent-
oriented systems development with a particular emphasis on the early requirements engineering 
phase. The stated aim was to use agent concepts in the description and definition of the methodology 
rather than using OO concepts in a minor extension to existing OO approaches. Tropos takes the 
BDI model (Kinny, Georgeff, and Rao, 1996; Rao and Georgeff, 1995), formulated to describe 
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the internal view of a single agent, and applies those concepts to the external view in terms of 
problem modeling as part of requirements engineering. It also relies heavily on the i* framework 
of Yu (1995) for concepts and notation.

In summary, there is a tendency to reuse significant portions of object-oriented methodological 
approaches, supplementing them with a new focus on organizations, social interactions, proactiv-
ity, and roles. There is still discussion about the extent to which UML can be useful. Several AO 
methodologies use existing UML as a pragmatic option or, often, AUML diagrams but, at the same 
time, find deficiencies for which they supply new diagrammatic representations.

COMPARING AGENT-ORIENTED METHODOLOGIES

Several authors have made direct comparisons of these (and other) AO methodologies. Cernuzzi 
and Rossi (2002) proposed a framework containing a set of internal attributes (autonomy, reactiv-
ity, proactiveness, and mental notions), a set of interaction attributes (social ability, interaction 
with the environment, multiple control, multiple interests, and subsystems interaction), and four 
other requirements (modularity, abstraction, a system view, and communication support). They 
used this framework in a case study to evaluate a BDI-focused methodology (Kinny, Georgeff, 
and Rao, 1996; variously referred to as AAII or BDIM) and MAS-CommonKADS (Iglesias et 
al., 1998) both qualitatively and, with an appropriate set of metrics, quantitatively. This study and 
other comparative evaluations of both AO and OO methodologies were used as input to the frame-
work proposals of Dam and Winikoff (2004), who proposed four categories: concepts, modeling 
language, process, and pragmatics. Their contribution is that the evaluation was done not only by 
the authors but by surveying a set of students who had used the case study methodologies (MaSE, 
Prometheus, and Tropos) on a design problem of a mobile travel planner. The same four categories 
were used by Sturm and Shehory (2004) and used to evaluate Gaia (as a single example) using 
a seven-point quantitative metric scale. The framework of Tran, Low, and Williams (2003) also 
has four categories, but these are said to be process-related (fifteen criteria), technique-related 
(five criteria), model-related (twenty-three criteria), and other supportive features (eight crite-
ria). The framework was applied by Tran, Low, and Williams (2004) to five well-referenced AO 
methodologies—namely, MaSE, Gaia, BDIM, Prometheus, and MAS-CommonKADS. Different 
ordinal scales are used for the several-criterion sets. A more extensive set of results (the evaluation 
of ten AOSE methodologies) is shown in Table 8.1 (page 125), and a statistical evaluation of nine 
(seven overlapping and two new) is presented by Elamy and Far (2006).

AN ALTERNATIVE TO A SINGLE AGENT-ORIENTED 
METHODOLOGY: SITUATIONAL METHOD ENGINEERING

Using a single fixed AO methodology (e.g., any of those outlined in the second section of the 
chapter) works well if that methodology and the project demands are in good alignment. This 
is rarely the case. More likely is the situation when the user of the XYZ methodology finds he/
she needs something different or something additional. Improvisation can follow, but this runs 
the risk of introducing incompatibilities and inconsistencies—as well as incurring high effort-
overhead costs.

An alternative is to use the well-founded tenets of “situational method engineering” or SME 
(e.g., Brinkkemper, 1996; Kumar and Welke, 1992; Ter Hofstede and Verhoef, 1997). SME pro-
vides a flexible way of constructing a methodology from a set of method fragments in such a way 
that the process requirements of the individual project are fully satisfied and the methodology is 
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aligned to the personal and organizational cultures of the organization. In addition, SME provides 
sufficient flexibility to support the valuable process of Software Process Improvement or SPI, as 
advocated by, for example, CMMI or ISO/IEC 15504 (SPICE).

SME suggests that the elements of one (or more) methodology can be modularized and en-
capsulated as “method fragments” (van Slooten and Hodes, 1996) and stored in a repository or 
methodbase (e.g., Brinkkemper, 1996; Ralyté and Rolland, 2001). From the methodbase are then 
extracted only those fragments relevant to the current situation. These fragments are then connected 
together using “construction guidelines” to form the situational method(ology).

Ideally, the method fragments in the methodbase should all be instances of one of the concepts 
captured in a metamodel underpinning the methodbase (Ralyté and Rolland, 2001; Henderson-
Sellers, 2003). The metamodel provides essentially a set of rules and prescriptive descriptions of 
all of the kinds of method elements permissible within the methodbase.

The challenge for the method engineer, as noted above, is to select appropriate and compatible 
fragments and to construct the final methodology (e.g., Wistrand and Karlsson, 2004). This may 
be from scratch or as an extension to an existing methodology (Ralyté, Deneckère, and Rolland, 
2003). Thus, construction guidelines (e.g., Brinkkemper, Saeki, and Harmsen, 1998; Klooster et 
al., 1997; Ralyté and Rolland, 2001; Ralyté, Rolland, and Deneckère, 2004; Rolland, Prakash, 
and Benjamen, 1999) are critical in the SME approach. Creating a project-specific methodology is 
currently one of the more difficult and time-consuming jobs of the method engineering approach, 
since the method engineer has to understand the methodology, the organization, the environment, 
and the software project in order to select the appropriate fragments from the repository to use on 
the project as well as to understand the rules of construction. Traditionally, this process is carried 
out using predefined organizational requirements and the experience and knowledge of the method 
engineer or process engineer (e.g., Fitzgerald, Russo, and O’Kane, 2003), although significant tool 
support is likely in the near future (Saeki, 2003; Wistrand and Karlsson, 2004).

THE OPEN PROCESS FRAMEWORK: ITS USE IN AGENT-ORIENTED 
METHOD ENGINEERING

One example of a method engineering approach that provides fragment support for both object-
oriented and agent-oriented methodological thinking is the OPEN Process Framework or OPF 
(Firesmith and Henderson-Sellers, 2002; Henderson-Sellers, 2005). The OPF adopts a framework 
approach based on an underpinning metamodel (Figure 8.2, page 132).3 Originally created to sup-
port object-oriented software development, the OPF methodbase (repository) has recently been 
extended to include methodological support for agents (see, e.g., Debenham and Henderson-Sellers, 
2003; Henderson-Sellers, 2005). As with any method engineering approach, OPF provides a re-
pository of method fragments offering direct as well as extensible support for the construction of 
individually tailored (i.e., situational) methodologies for use in both industry and research environ-
ments. The current OPF repository contains many tens of method fragments for each metamodel 
element—in total over 1,000 standardized fragments are available for the user.

To create a situational methodology, various method fragments are then chosen from the OO/
AO repository of the OPF and combined to describe the process, associated people and social 
issues, deliverables, and so on. Using the tenets of SME outlined above, such a methodology 
can be specifically constructed and tailored toward a specific project or a specific organizational 
“standard” using the supplied construction guidelines together with a set of deontic matrices 
(Figure 8.3, page 133). These matrices support the identification of fuzzy relationships between 
pairs of method fragment types—for example, linkages between tasks and techniques. This gives 
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Table 8.1

Comparison of Ten Agent-Oriented Methodologies

A. Comparison Regarding Steps and Usability of Techniques
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  1. Identify system goals H H H H H H H

  2. Identify system tasks/behavior M H H H H H H H H H

  3. Specify use case scenarios H H H H H H H

  4. Identify roles H H H M M M

  5. Identify agent classes H H M H M H H L M H

  6. Model domain conceptualization M M M

  7. Specify acquaintances between 
agent classes

M M H H H M H M M H

  8. Define interaction protocols H H H H H M H H H

  9. Define content of exchanged 
messages

M H L H M H M L M

10. Specify agent architecture L H H H M H

11. Define agent mental attitudes 
(e.g., goals, beliefs, plans, 
commitments . . .)

M M H M H M H H H

12. Define agent behavioral 
interface (e.g., capabilities, 
services, contracts . . .)

H L H H M

13. Specify system architecture (i.e., 
overview of all components and 
their connections)

M H H H H H

14. Specify organizational structure/
control regime/interagent social 
relationships

H H L H H

15. Model MAS environment 
(e.g., resources, facilities, 
characteristics)

M H M M H L H

16. Specify agent-environment 
interaction mechanism

H L H

17. Specify agent inheritance and 
aggregation

H M M

18. Instantiate agent classes M L L H L L

19. Specify agent instances 
deployment

L H

Key: H = high; M = medium; L = low; Y = yes; N = no; P = possibly.
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Table 8.1

Comparison of Ten Agent-Oriented Methodologies (continued)

B. Comparison Regarding Concepts

Concepts Gaia Tropos
MAS-
CommonKADS Prometheus PASSI

System goal Actor diagram, 
rationale 
diagram

Goal cases Goal diagram

System task/
behavior

Role model Actor diagram, 
rationale 
diagram

Task model Functionality 
descriptor

System 
requirement 
model

Use case 
scenario

Use cases Use case 
descriptor

System 
requirement 
model

Role Role model System 
requirement 
model, Agent 
society model

Domain 
conceptualization

Expertise 
model

Agent society 
model

Agent goal/task Actor diagram Agent model Agent class 
descriptor

System 
requirement 
model

Agent-role 
assignment

Agent model Agent model Agent society 
model

Agent belief/
knowledge

As resources 
in each agent 
in agent class 
diagram

Expertise 
model

Data descriptor Agent 
implementation 
model

Agent capability/
service

Service model Agent model, 
organizational 
model

Capability 
diagram

Agent society 
model

Agent plan/
reasoning rule/
problem-solving 
method

Plan diagram Expertise 
model

Plan descriptor Agent 
implementation 
model

Agent percept/
method

As events in 
state transition 
diagrams of 
coordination 
model

Percepts 
descriptor

Agent 
architecture

BDI 
architecture

Design model Agent 
overview 
diagram

Agent 
implementation 
model
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Adelfe MaSE RAP MESSAGE INGENIAS

Goal hierarchy 
diagram

Goal-based use 
case model

Goal/task model Goals and tasks 
model

Use case model Extended role 
diagram

Goal-based use 
case model

Goal/task model Goals and tasks 
model

Use case model Use case diagram Goal-based use 
case model

Use case diagram

Role diagram Agent model Agent/role model Agent model, 
organization 
model, interaction 
model

Information model Domain model

Detailed 
architecture 
document

Goal-based use 
case model

Agent model

Agent class 
diagram

Agent model Agent/role model Agent model

Detailed 
architecture 
document

Information model N.b. Can be 
recorded in 
mental states, but 
not mentioned in 
methodology

Detailed 
architecture 
document

Task state 
diagram

Behavior model Agent model

Interaction model

Detailed 
architecture 
document

Agent class 
architecture 
diagram
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Table 8.1 (continued)

Comparison of Ten Agent-Oriented Methodologies (continued)

B. Comparison Regarding Concepts

Concepts Gaia Tropos
MAS-
CommonKADS Prometheus PASSI

Agent 
acquaintance

Acquaintance 
model

Sequence 
diagram/ 
collaborative 
diagram

Coordination 
model

Interaction 
diagrams

System 
requirement 
model

Interaction 
protocol

Interaction 
model

Sequence 
diagram

Coordination 
model

Interaction 
protocols

Agent society 
model

Content of 
exchanged 
messages

Sequence 
diagram/ 
collaborative 
diagram

Coordination 
model

Interaction 
diagrams and 
protocols

Agent 
implementation 
model

Interagent 
contract/
commitment

System 
architecture

Organization 
model

System 
overview 
diagram

Agent 
implementation 
model

Organizational 
structure/
interagent social 
relationship

Organizational 
structure 
model

Nonfunctional 
requirements 
framework

Organization 
model

Environment 
resource/facility

Environmental 
model

Organization 
model, design 
model

System 
overview 
diagram

Environment 
characterization

Agent 
aggregation 
relationship

Agent model Organization 
model

Agent 
inheritance 
relationship

Organization 
model

Agent 
instantiation

Agent model Organization 
model

Agent class 
descriptor

Agent instances 
deployment

Deployment 
model
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Adelfe MaSE RAP MESSAGE INGENIAS

Software 
architecture 
document

Agent class 
diagram

Interaction model Organization 
model

Interaction model

Interaction 
languages 
document

Communication 
class diagram

Interaction model Interaction model

Interaction 
languages 
document

Communication 
class diagram

Interaction model Interaction model Interaction model

Interaction model

Detailed 
architecture 
document

System 
architecture 
diagram

Organization 
model

Organization 
model

Organization 
model

Environment 
definition document

Organization 
model

Environment 
model

Environment 
definition document

Detailed 
architecture 
document

Deployment 
diagram

Deployment 
diagram

UML deployment 
diagram
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Table 8.1

Comparison of Ten Agent-Oriented Methodologies (continued)

C. Comparison Regarding Model-Related Criteria
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Completeness/expressiveness M H H H H H H M M H

Formalization/preciseness (a) H H M H H H H H H H

Formalization/preciseness (b) Y Y Y Y Y Y Y Y Y Y

Model derivation Y Y Y Y Y Y Y Y Y Y

Consistency (a) Y Y N Y Y Y Y N N Y

Consistency (b) Y Y Y Y Y Y Y Y Y Y

Complexity (a) Y Y Y Y Y Y Y Y Y N

Complexity (b) Y Y Y Y Y Y Y Y Y N

Ease of understanding H H H H H H H H H M

Modularity Y Y Y Y Y Y Y Y Y Y

Abstraction Y Y Y Y N Y Y Y Y Y

Autonomy Y Y Y Y Y Y Y Y Y Y

Adaptability P N N N N Y N N P P

Cooperative behavior Y Y Y Y Y Y Y Y Y Y

Communication ability N Y Y Y Y Y Y Y Y Y

Inferential capability N Y Y Y Y Y P P Y Y

Reactivity P Y Y Y Y Y Y Y Y Y

Deliberative behavior Y Y Y Y Y Y Y N Y Y

Personality N N N N N N N N N N

Temporal continuity N N N N N N N N N Y

Concurrency N N N N Y N Y N N N

Human computer interaction N Y Y Y Y Y N Y Y Y

Models reuse Y P Y P Y P Y P P P

Source: After Tran and Low (2005).

Key: H = high; M = medium; L = low; Y = yes; N = no; P = possibly.
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a high degree of flexibility to the process engineer, perhaps assisted by an automated tool (Nguyen 
and Henderson-Sellers, 2003), who can allocate appropriate deontic values to any specific pair 
of process components depending upon the context, that is, the specific project, skills set of the 
development team, and so on. Linkage decisions are made either subjectively/experientially or by 
means of an overall assessment of a number of factors relating to the project. These factors include 
maturity/capability level (such as CMM or SPICE), specific skills in the workforce, domain of 
the project, and so forth.

As noted earlier, one of the hardest tasks currently in SME construction is the selection of the 
optimal set of method fragments to suit any specific situation. Syntactic coupling can be verified in 
terms of the matching of the output from one fragment to the input for a second. This is facilitated 
by generating fragments from a metamodel and also by using a standard way of documenting the 
fragments. Nevertheless, the current reality is that the semantic aspect of the fragments must be 
analyzed “by hand,” usually by a skilled method engineer (either in-house or as a visiting con-
sultant or mentor). Work toward a more objective approach is under way (e.g., McBride, 2004; 
Nguyen and Henderson-Sellers, 2003; Ralyté, 2004), and prototype tools (MethodComposer, 
MET) have been developed.

Creation of a project-specific or organization-specific agent-oriented methodology then proceeds 
using the agent-oriented method fragments contained in the OPF repository together with many 
non–agent-oriented method fragments (typically the earlier object-oriented method fragments) that 
are needed for those elements of software development that are not technology/paradigm-dependent. 
These include method fragments to describe project management, some metrics, reusability, and 
so on. A fully comprehensive methodology, suitable for direct industry usage, can be constructed 

Table 8.1

Comparison of Ten Agent-Oriented Methodologies (continued)

D. Comparison Regarding Supportive-Related Criteria
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Software and methodological support N N N Y Y Y Y Y Y Y

Open systems Y N N N N Y N N N N

Dynamic structure N N N N Y N P N N N

Agility and robustness N N Y Y N Y Y Y N N

Support for conventional objects N N N Y N Y N Y Y Y

Support for mobile agents N N N N Y N N N N N

Support for ontology N N Y N Y N N N Y N

Source: After Tran and Low (2005).
Key: H = high; M = medium; L = low; Y = yes; N = no; P = possibly.
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in this way; alternatively, one of the existing AO methodologies (e.g., Prometheus or Tropos) 
can be reconstructed by using only those specific AO fragments. For instance, Henderson-Sellers 
(2005) shows in more detail how a version of the Prometheus methodology enhanced with some 
Tropos concepts can be put together from the method fragments in this newly enhanced OPF 
repository (Figure 8.4).

Overall, the strength of this SME approach is that the finally constructed methodology is highly 
attuned to local conditions and the people in the organization. The challenge is to construct the 
several deontic matrices, ensuring that (a) linkages accord to the local situation and (b) the inter-
faces of any pair of method fragments to be “plugged together” are compatible.

Figure 8.2  The Five Top-Level Metaclasses of the OPEN Process Framework’s Metamodel

Source: After Firesmith and Henderson-Sellers (2002). Copyright © 2002 Addison-Wesley.
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Figure 8.3  One of the Deontic Matrices Is Used to Link Tasks to Techniques

Source: Redrawn from Henderson-Sellers, Simons, and Younessi (1998). Copyright © 1998 Addison-
Wesley.

Note: The values in the matrix represent the likelihood of the occurrence of that pair using five levels 
of possibility.
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Figure 8.4 	 A Reconstruction of Prometheus from OPF AO Fragments Supplemented by Two 
Fragments (AND/OR Decomposition and Means–End Analysis) Derived from the 
Tropos Methodology
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3-layer BDI model Y Y

Source: Modified from Henderson-Sellers, 2005.
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SUMMARY

To date, the evolution of AO methodologies has been disparate with many groups worldwide 
creating individual offerings. These vary in style and, particularly, in heritage and have a specific 
focus, either in terms of domain, application style, or life-cycle coverage. For industry adoption, it 
is essential that full life-cycle coverage is achieved in a “standardized” way. One way of achieving 
some degree of standardization yet maintaining full flexibility is through the use of situational 
method engineering, underpinned by an agreed standard metamodel. With this approach, method 
fragments are created and stored in a repository or methodbase. For an individual application, 
only a subset of these is then selected from the repository and a project-specific (or sometimes 
organization-specific) methodology is constructed. Here, we have demonstrated how this might 
work by using the OPEN approach, which already provides a significant coverage of AO method 
fragments as well as more traditional OO and pre-OO fragments.

The advantages of an SME approach to methodology provision lie in the flexibility and com-
plete tailorability of the construction process. Only fragments suitable to the organization’s culture 
and capability (e.g., in terms of ISO/IEC 15504 or CMM/CMMI), the skills of its developers, 
the organizational culture, and leadership style (e.g., Constantine and Lockwood, 1994) are used. 
Construction costs are commensurate with the costs of attempting to mold an “off-the shelf, one-
size-fits-all” methodology to a specific situation. Starting with an SME approach with a large 
extant repository (such as that provided in the OPF) is clearly advantageous. Empirical studies, 
while undertaken only in OO and not AO situations (e.g., Henderson-Sellers and Serour, 2005), 
have shown that organizations can readily benefit from this SME approach in practice.
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NOTES

1. For the present chapter, the words method and methodology will be used synonymously (e.g., Jayaratna, 
1994).

2. A more recent manuscript in preparation does, in fact, acknowledge influences from object technology 
(see also later discussion).

3. In the near future, this traditional, process-focused metamodel will be supplanted by the forthcoming 
ISO/IEC 24744 standard: Software Engineering Metamodel for Development Methodologies. The new 
metamodel supports method enactment as well as method construction and brings together process-focused 
components of a methodology and product-focused components.
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Chapter 9

APPLICATION OF THE FACT-BASED APPROACH 
TO DOMAIN MODELING OF OBJECT-ORIENTED 

INFORMATION SYSTEMS

Kinh Nguyen and Tharam Dillon

Abstract: In order for an information system to satisfy the information needs for which it is built, 
the design must be based on a correct domain model, which must capture precisely all the classes 
and relationships that are relevant to the information needs being addressed. To perform this task, 
the text analysis approach—whereby one tries to discover classes and relationships by examining 
the nouns and verbs in the language of the domain stakeholders—is commonly adopted. However, 
there are situations where the construction of the domain model can be too complex a task for 
the text analysis approach to handle effectively. In this chapter, we identify a number of problems 
associated with the text analysis approach, and propose the use of the fact-based approach (also 
known as Object-Role Modeling) as an alternative technique. In particular, we show how the 
fact-based approach can be used effectively, in conjunction with the use case approach, in the 
construction of domain models for object-oriented information systems.

Keywords: Information System, Domain Modeling, Text Analysis, Fact-Based Modeling, Object-
Role Modeling, Use Case

INTRODUCTION

In the development of information systems, it is increasingly common for the modeling task to 
be approached from the object-oriented perspective, regardless of the eventual implementation 
platform. One obvious advantage of this approach is that it allows the analyst to capture both the 
structural and behavioral features of the problem as well as the solution space. In addition, the 
widespread use of UML greatly facilitates both the modeling activities and the communications 
among the people involved. Moreover, with recent advances in practical object persistence solu-
tions such as object-relational mapping, the implementation of information systems can be truly 
object-oriented—that is, the domain objects are directly represented and manipulated as software 
objects. Consequently, the use of object-oriented modeling has become even more compelling.

Among the tasks of object-oriented modeling, the construction of a correct domain model—
one that captures all the relevant domain classes and their relationships—is critical. A successful 
information system must, by necessity, provide the correct functionality in order to satisfy the 
business’s information needs for which the system is built. The domain model is in fact a model 
of those information needs, and as such, it plays a crucial role in the development process.

The construction of the domain models for industry-strength information systems can be a dif-
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ficult task. Most business information systems typically present the analyst with a large number 
of business-related concepts, complex relationships among business entities, intricate business 
rules, and operational procedures, most of which are often not obvious and have to be carefully 
unearthed and documented. In such cases, the popular text analysis method, as will be illustrated 
in this chapter, may not be able to handle the task effectively. The aim of the chapter is to identify 
a number of problems associated with the text analysis approach, and to propose the use of a fact-
based approach, also known as Object-Role Modeling or ORM, as a supporting technique for the 
construction of domain models for object-oriented information systems.

The following three sections present a brief review of current approaches to domain modeling; 
briefly introduce the basic concepts of ORM; and describe the Gymnastics System case study, 
which will be used throughout the chapter. The next section examines in detail a particular domain 
modeling process that applies the text analysis approach to the Gymnastics System case study, 
and identifies various shortcomings of the text analysis approach in general. We then show how 
ORM can be combined with the use case approach to provide a very effective method for the 
construction of the domain model. Finally, to provide further insights, we examine the difference 
between the text analysis and ORM on a more theoretical basis.

A REVIEW OF APPROACHES TO DOMAIN MODELING

The domain model is made up of the following main elements: classes, relationships (inheritance, 
association, and aggregation), attributes (for classes and associations), and methods. Of all of 
the elements, classes and relationships are of primary importance. The two most basic issues 
are: (1) how are we to discover the relevant classes? and (2) how are we to discover the relevant 
relationships? Once these two questions have been resolved, other issues can be more readily 
addressed.

As expected, a number of approaches have been suggested to identify classes and relationships. 
To help make sense of what seems to be a diversity of approaches, it is useful to observe that they 
can be broadly described in terms of two dimensions: perspective and discovery techniques. The 
perspective can be top-down, or bottom-up, and the discovery techniques can be text analysis, 
collaboration analysis, or fact analysis.

Perspective relates to whether or not we divide the subject matter into various parts and work 
on those parts in the process of developing the complete model. Considering that the majority of 
methods propose the use of nouns and noun phrases for identifying classes, we may ask: Where are 
we to look for these nouns and noun phrases? As stated in Delisle, Barker, and Biski (1999), the 
answer varies: in a concise summary of the subject matter (Coad and Yourdon, 1990), in a descrip-
tion of the problem space (Pressman, 1997), in a description of the user requirements (Rumbaugh 
et al., 1990), or in descriptions of use cases, scenarios (Whitten, 1998). To make some sense of 
all of these answers, let us note that the ultimate source for relevant concepts must be the subject 
matter itself—that is, anything that can be uttered about the system at hand. But the practical 
source has to be a manageable subset of the ultimate source. Any of the following may be part of 
that practical source: a summary description of the subject matter, the transcripts of interviews, 
a set of use case descriptions, and so forth. The kind of practical source we use depends on our 
perspective. We may adopt a top-down perspective and simultaneously concern ourselves with 
the whole system, or we may construct the domain model incrementally from considerations of 
parts of the system (e.g., use cases), that is, by pursuing a bottom-up approach.

Let us now consider a sample of methods. George and colleagues (2004, pp. 208–209) suggest 
that domain modeling can be done from a top-down or a bottom-up perspective or by using a 
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combination of both. The top-down approach derives the model from an “intimate understanding 
of the nature of the business, rather than from any specific information requirements in computer 
displays, reports, or business forms.” To help develop a model from this perspective, a number of 
key questions are suggested. To identify classes, it is suggested that we ask: “What are the subjects/
objects of business?” “What types of people, places, things, and materials are used or interact in 
this business?” “How many instances of each object may exist?” Similar sorts of questions are 
suggested for identifying attributes, associations, aggregations, compositions, generalization, and 
so on, including integrity rules and security controls. These authors also embrace the bottom-up 
approach by “reviewing specific business documents—computer displays, reports, business 
forms—handled within the system. These displays, reports, forms can be attached to the relevant 
use case.” Thus, this approach can be broadly characterized as being both top-down and bottom-
up in perspective, and using text-analysis as the discovery technique.

Bennett, McRobb, and Farmer (2002) strongly advocate the identification of classes and rela-
tionships through analysis of use cases by (1) first trying to identify the actors and the classes (or 
objects) that are involved, then (2) trying to sketch an initial collaboration diagram, and (3) from 
there, trying to determine the relevance of the classes (identified earlier in the analysis of the use 
case) and their relationships (Bennett et al., 2002, 176–195). Thus, the main approach these authors 
recommend is bottom-up in perspective and uses collaboration analysis as the discovery technique. 
However, they also take the view that it is feasible to develop a domain model that is “independent 
of any particular use cases.” In addition, they advise that it helps to know what you are looking for 
by keeping in mind (1) a set of categories of things and concepts that can be potential candidates 
for representation (people, organizations, structures, physical things, etc.), and (2) some guidelines 
to eliminate unsuitable candidates. Thus, the method is mainly, but not exclusively, bottom-up in 
perspective and uses collaboration and text analysis as discovery techniques.

Object modeling technique (OMT; Rumbaugh et al., 1990) is largely top-down and text analysis 
in character. As is common with text analysis approaches, two kinds of heuristics are provided to 
help the analyst identify the appropriate concepts: (1) a set of categories of things to watch out for 
as potential candidates, and (2) a set of guidelines to evaluate the suitability of a candidate concept. 
The evaluation guidelines of OMT will be discussed in detail in a later part of the chapter.

The Responsibility-Driven approach (Wirfs-Brock, Wilkerson, and Wiener, 1990) places an 
emphasis on behavior. The approach’s starting point is the perceived responsibilities of the system. 
The tasks to be done by the system are considered in turn. And, for each task, the first question 
is: Which class is responsible for carrying it out? The next question is: With which other classes 
does this class have to collaborate in order to perform its duty? And so on. The classes and their 
collaborations are usually recorded using the Class-Responsibility and Collaborator (CRC) cards 
(Beck and Cummingham, 1989). This approach is thus bottom-up in perspective and uses col-
laboration analysis as the main discovery technique. Note that this approach still needs to initially 
identify the relevant classes, and this is usually done by simple brainstorming or by some text 
analysis technique.

The Unified Process or UP (Jacobson, Booch, and Rumbaugh, 1999) provides a general devel-
opment process framework that can be customized for specific projects. Judging by the published 
literature on UP in relation to domain modeling, UP domain modeling can be broadly described 
as embracing both the top-down and bottom-up approaches with text analysis and collaboration 
analysis as its discovery techniques.

Extreme Programming or XP (Beck, 2000) advocates the writing of stories (scenarios, use cases) 
and test cases, and possibly with a minimum amount of analysis, proceeding to programming—
relying on refactoring techniques to incorporate additional functionality and to cope with changes. 
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Any domain modeling engaged in by XP could be said to be bottom-up and text analysis (at least 
in identifying classes).

Recognizing the challenge of domain modeling for data-intensive systems, the use of analysis 
patterns, such as those proposed in Fowler (1977), has been seen as a way to improve productiv-
ity. Works on analysis patterns seek to describe commonly recurring analysis situations and their 
associated solutions, forming an explicit, shareable knowledge-base. Analysis patterns are a form 
of knowledge reuse, which derives its inspiration from the influential works on design patterns 
(Gamma et al., 1995). Despite being analogous to design patterns, the impact of analysis patterns has 
been quite moderate. Most likely, this lack of impact is due to the fact that in practice we encounter 
a great variety of situations, which, after all, reflects the great variety of human activities.

Quite distinct from the approaches mentioned so far is the fact-based modeling approach, 
formally known as Object-Role Modeling (Halpin, 2001). The fact-based approach captures 
information structure in terms of elementary fact types and the constraints on these fact types. In 
simple terms, elementary fact types are types of sentences that allow us to describe the state of 
the application domain (often referred to as the universe of discourse). The elementary fact types 
effectively form a well-defined ontology. This ontology, in turn, allows the analyst to precisely 
express, as logical statements, the constraints (invariants) on the possible states of the universe 
of discourse. A distinguishing feature of ORM is that its key abstraction mechanism is attribute-
free. Though in ORM parlance elementary fact types are about “objects” playing roles, objects in 
ORM can correspond to both objects and attributes in object-oriented models. This attribute-free 
property is the key factor that allows ORM to be used effectively to construct the domain models 
in an incremental and stable manner. ORM strongly advocates the bottom-up approach, working 
with user views of the data (reports, forms, etc.) rather than with the general description of the 
application domain. The practice of working with user views of data can naturally be adopted to 
work with use cases, as will be shown. Thus, ORM can be characterized as being bottom-up in 
its perspective and fact-based in its discovery technique.

Another well-known attribute-free approach is that proposed by Embley (1998). While ORM 
is concerned more or less exclusively with the information structure, Embley’s method includes 
the dynamic aspect of the system.

Though it is not normally regarded as being in the field of domain modeling, Resource Descrip-
tion Framework or RDF (Beckett, 2004), is closely related to ORM. RDF expresses information 
in terms of RDF triples, which consist of a subject, a predicate, and an object. The “subjects” and 
“objects” of RDF closely correspond to “objects” of ORM, and RDF triples are a form of ORM 
binary fact type.

Given the important role played by natural language in the modeling process, techniques 
developed for natural language processing, such as part-of-speech tagging, pronoun resolution, 
sentence normalization, and so on, have been applied to facilitate object-oriented modeling (e.g., 
see Delisle, Barker, and Biski, 1999; Overmyer, Lavoie, and Rambow, 2001; Rayson et al., 2000). 
These tools use as their major input various sorts of textual descriptions about the domain and 
the system, such as requirements statement, use case descriptions (or task scripts), transcripts 
of interviews, and so on. The tools can annotate the textual descriptions with part-of-speech 
tags, and extract and present the analyst with sets of content words in context, which helps the 
analyst determine candidate elements for the domain model. The combination of the techniques 
of tagging, pronoun resolution, and sentence transformation can produce descriptions made up 
of sentences that clearly indicate the information structure (e.g., customer/NN has/VBZ ID/NN) 
or various kinds of relevant behavior (e.g., customer/NN can/MD reserve/VBZ ticket/NN). The 
treatment of attributes may be more complicated. The consideration of adjectives for attributes 
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is problematic because, as observed in Delisle, Barker, and Biski (1999), the English language 
can and does convey information in complex noun phrases, whose treatment requires the use of 
a noun modifier relationship analyzer.

The brief survey above shows that text analysis is the prevalent technique for domain model-
ing. Even when collaboration analysis is used, a certain amount of text analysis is employed to 
identify the classes. From the survey and the techniques it covers, we can see that for data-intensive 
systems, the identification of domain classes and relationships can be a challenging task.

BASIC CONCEPTS OF THE FACT-BASED APPROACH

As a source of both introduction and reference to ORM, we recommend Halpin (2001), which 
provides a comprehensive treatment of ORM. A comparison of ORM and UML is given in Hal-
pin and Bloesch (1999). Further information can be found on the ORM Web site (2007), which 
includes information about ORM tools. In this section, we provide a brief introduction to the two 
most fundamental concepts of ORM, namely, “elementary fact type” and “uniqueness constraint,” 
and how they work. To do this, we apply the ORM approach to the design of a relational database 
that is based on—that is, able to support—an external view of an order shown in Figure 9.1.

With the fact-based approach, we can start by noting that all the information contained in the 
above view can be expressed by the following statements or facts: (1) Order ORD-10 is made 
on 15 March 2006; (2) Order ORD-10 is for customer CUST-10; (3) Customer CUST-10 has the 
name Sam Smith; (4) Customer CUST-10 is on the phone 9800–1234; (5) Product PROD-10 has 
the name “Table”; (6) Product PROD-10 has a unit price of $180.00; (7) Product PROD-20 has 
the name “Chair”; (8) Product PROD-20 has a unit price of $50.00; (9) Order ORD-10 requests 2 
units of product PROD-10; and (10) Order ORD-10 requests 10 units of product PROD-20. (We 
omit the facts about subtotals and the total amount, which can be derived from other facts.)

The above statements are known as elementary facts because they cannot be broken down any 
further without losing their ability to assert facts about the view. Some of the facts, such as facts 
5 and 6, have the same structures. They are instances of the same elementary fact type. Below are 
all the elementary fact types that can be used to state all the facts (except for the derived ones) in 
the given external view:

Order Number: ORD-10
Order Date: 15 March 2006
Customer ID: CUST-10, Sam Smith, Ph: 9800-1234

Product Code

PROD-10
PROD-20

Name

Table
Chair

Qty

2
10

Unit Price

180.00
50.00

Amount

360.00
500.00

$860.00

Figure 9.1  A View of an Order
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Order (number) . . . is made Date (dd/mm/yyyy) . . .
Order (number) . . . is for Customer (ID) . . .
Customer (ID) . . . has Name . . .
Customer (ID) . . . is on Phone (code) . . .
Product (code) . . . has Name . . .
Product (code) . . . has UnitPrice ($) . . .
Order (number) . . . for Product (code) . . . has Quantity (nr+) . . .

(A more stringent standard would require the second-to-last fact type to be written as “Product 
(code) . . . has unit price MoneyAmount ($) . . .”)

The third elementary fact type represents a fact or relationship between type Customer and 
type Name. Type Customer is an entity type. Its instances are nonlexical objects, and they are 
identified by lexical objects IDs. Type Name is a value type. Its instances are lexical objects and 
are therefore self-identifying. Every entity type is required to have a reference scheme (e.g., ID 
is the reference scheme for Student). The elementary fact types can be graphically represented in 
a conceptual schema diagram as shown in Figure 9.2.

A number of constraints can be applied to the elementary fact types, the most important among 
them being the uniqueness constraints. These constraints are represented by arrows such as those 
shown in Figure 9.2. The arrow over the elementary fact type F1, for example, indicates that a 
Customer can have at most one Name. As a more complicated example, the arrow over fact type 
F7 (which is broken into two parts) indicates that each combination of Order and Product can 
have at most one Quantity.

With the elementary fact types and uniqueness constraints defined, the following simplified 
procedure can be applied to map the conceptual schema to a relational schema: (1) First, put in 
the same table all the fact types that are attached to the same object with a key of length 1; and 
(2) then, put each of the remaining fact types in a separate table.

Applying that procedure, we get the tables:

Customer (ID, Name, Phone)
Product (Code, Name, UnitPrice)
Order (OrderNr, Date, CustomerID)
OrderedQuantity (OrderNr, ProductCode, Quantity)

In addition to the basic concepts above, ORM provides a rich collection of graphical constraints. 
Apart from the internal uniqueness constraints that we have seen, there are other constraints such 
as: external uniqueness constraints (that apply to more than one fact type), mandatory constraints, 
value constraints, frequency constraints, subset constraints, equality constraints, exclusion con-
straints, and so on. Furthermore, due to the availability of the elementary fact types, which allows 
us to make well-defined statements, we can express any other static constraints, if we need to, as 
predicates in predicate calculus. These are known as textual constraints.

Earlier it was remarked that ORM provides models that are capable of evolving in a stable 
manner. As a simple illustration, suppose that in the example above, the price of a product is 
determined by contracts the supplier makes with the customers; that is, the price of a product 
may vary from customer to customer. Then, all we have to do with the ORM model is to replace 
the fact type “Product . . . has UnitPrice . . .” with a ternary fact type “Product . . . for Customer 
. . . has UnitPrice . . . .” With an entity-relationship or object-oriented model, we would need to 
remove an attribute from the class Product, and add a new class and some relationships to represent 
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the new information. It is useful to note that with ORM, (1) not only is the stability of the model 
preserved but also (actually the other side of the same coin) (2) the changes to the model reflect 
precisely the changes in our cognition of the domain.

THE GYMNASTIC CASE STUDY

This case study was originally published in White (1994). The problem statement below is a 
paraphrase of the original version, with some minor modifications that will be pointed out.

The purpose of the Gymnastics System is to keep information on the gymnasts, their clubs, 
and the competitions among the clubs during one season.

Figure 9.2  Conceptual Schema Diagram for the Order
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•	 Gymnasts and Clubs. For each gymnast, we record an ID (unique), a name, a date of birth, 
and a gender. Each gymnast belongs to one club. Each club has a name (unique), an address, 
and a phone number.

•	 Meets, Competitions, and Events. The season’s competitions are organized in a series of 
meets. Each meet is held in the course of one day. Each meet consists of several competi-
tions. Each competition consists of a series of events run on different equipment. Figure 9.3 
shows a sample of the result of a competition in a meet. Each meet is identified by a name 
and has the date on which it is held. A competition within a meet is identified by its name. 
The competition names come from a small set of standard names. Thus, a competition within 
a meet is identified across the system by the combination of the meet name and the competi-
tion name.

•	 Teams in Competitions. When a club enters a meet, the club enters some subset of its members 
in a competition. This subset is a team. When a team is in a competition, it must enter all 
the events of that competition. A team must have the same set of members entered for each 
event within a competition (White, 1994, p. 34). Thus, a team is identified by the name of 
the club that it represents and the competition that it enters.

•	 Scoring. Each event in a meet has a judging panel assigned to it. These people are qualified 
to give scores for this event. Each judge rates each gymnast on his/her performance in the 
event. The highest and lowest scores will be thrown out, and the rest are averaged to produce 
the gymnast’s score for the event. The event score of a team for an event is the sum of all 
its members’ scores for the event. The competition score of a team (which is also its meet 
score) is the sum of its event scores.

•	 System Operations. The Gymnastics System is used to prepare the schedule of meets for the 
season, to ensure that qualified judges are assigned, to register teams and gymnasts, to run 
the meets, and to publish the results in various forms. Its main system operations include: (1) 
registering a club in a meet; (2) registering a team in a competition; (3) assigning a judge to 
an event; (4) scoring trials, events, and competitions; and (5) mailing competition schedules 
to gymnasts and judges, and so forth.

•	 Note: The system in the original version maintains information about several leagues for 
several seasons. Because the information about one league for one season is largely inde-
pendent of the rest, without loss of generality, we confine the scope to one season and one 
league.

THE ORTHODOX DOMAIN ANALYSIS PROCESS

In the treatment given in White (1994), the first model to be built is the domain model and the first 
task for its construction is to find the candidate classes. Below is part of the analysis presented by 
the author in Chapter 4 of the book, which is displayed in extracts, followed by our comments, 
some of which contain comparisons with ORM.

We are about to model a gymnastics scoring system. Our mission is to automate the defini-
tion, registration, scoring, and record keeping of a gymnastics season. (p. 33)

Comment 1. This is the opening paragraph of the problem statement. The nouns are italicized as 
candidates for further analysis. Note that the approach is highly sensitive to the way the problem 
statement, the interview scripts, and other documents are written.
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Gymnastics System is the entire system, not one object. The project is best named “Gym-
nastics System.” (p. 33)

Comment 2. Few of us, if any, would include the Gymnastics System as a class in the domain 
model (though we could argue that it is an object in the application domain). In ORM modeling, 
there will be no fact type involving “gymnastic system” as a participating entity. Consequently, 
“gymnastic system” will not be part of the domain model. The issue would not arise in the first 
place.

Definition, registration, scoring, and record keeping are operations that the system will have 
to carry out. These are general functions, not classes. (p. 33)

Comment 3. In ORM modeling, we would not have any fact types that involve terms describing 
the system’s functions. Therefore, these terms will automatically be excluded from consideration 
for the domain model.

Here is a brief description of a gymnastic league and one of their contests: a league is a 
group of clubs that compete against each other. Each team recruits members to participate 
in the contests. . . . [Keywords are italicized for subsequent analysis]

“Contests” is a vague word. Certainly contest will be a key abstraction, but a bit farther down 
in the statement are several other terms that could be considered as contests. (p. 34)

Comment 4. We may wonder: by what criteria is “contests” a vague word? In fact, this issue is 
never revisited. And when the key classes are later listed (p. 38), it is simply not there.

Figure 9.3  The Scoring of a Competition

Meet: Town Invitational
Date: 12/02/2006
Competition: Women’s Senior Team

Club

Flippers
Acrobats
Tumblers
Jugglers

Beam

41.5
42.2
38.4
36.2

Vault

40.3
38.5
39.8
41.0

Bar

44.6
41.0
42.6
37.4

Floor

43.7
40.7
41.3
39.6

Event Scores

Source: Based on Figure 3–4 in White (1994).
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Club is an entity in the Gymnastics System. A club and its members will need to be tracked. 
At this stage, team appears to be a synonym for club. To clarify the role of club and team in 
the system, return to the system function statement and identify the use cases involved in this 
portion of the system. List each of the actions that must be taken to complete the use case.

Comment 5. Beyond the simplest concepts, the going can quickly get tough. Considerable effort 
is needed in order to recognize potential hidden dangers and deal with them.

Use case: Register a club in a meet

1.	 Register the club in a meet.
2.	 For every competition in the meet, register the club members that are participating in 
that competition.

Comment 6. The idea of using the relevant use case for clarification is sensible, but thinking in 
terms of general collaboration does not seem to bring much benefit. It would be better to consider 
some sample data showing a meet, a competition or two, a club, and some members of the clubs. 
Using such examples, one can articulate the information content more easily.

Club, competition, and meet are collaborators in this scenario. When a club is registered 
for a meet, must it enter all competitions? The answer is “no.” Must a club have the same 
set of gymnasts entered in all competitions within a meet? Categorically “no,” or you could 
not have men’s and women’s competitions. In fact, the club enters some of its members in 
a competition. This subset is a team.

. . . Clearly, club and team are both abstractions in the Gymnastics Systems. (p. 34)

Comment 7. The concept of “team” is correctly identified in this context, but later it is confused 
with other concepts of “team.”

The analysis continued in this fashion, and other candidate classes such as event, judge, and 
the like were identified. One piece of reasoning, regarding the “judging panel,” appears to be 
questionable:

Each event has a judging panel assigned to it. These people are qualified scorers for this 
event. Each judge rates each gymnast on the event and reports the score to a score keeper. 
The score keeper throws out the high and low scores and averages the rest. . . .

A judging panel is a collection of judges assigned to judge an event. Judge is the class 
being collected and is a key abstraction. Judging panel is a relationship between event and 
judge that identifies the judges assigned to score the event. (p. 36)

Comment 8. But it can be argued convincingly that “judging panel” is a key abstraction. It 
makes perfect sense, for example, to ask: Who is on the judging panel for such and such event? 
We may represent it as a relationship for some reason, but in the language of the problem domain, 
it is an abstraction (a concept).

After about five pages of analysis, seven candidate classes (not counting “Season” and “League”) are 
listed as resulting candidate classes: Competition, Event, Judge, Team, Gymnast, Club, and Meet.
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From the extracts and comments above, we can make a number of observations. First, the 
process is quite labor-intensive. Effectively, we have to consider each of the nouns we encounter, 
even the ones that we may immediately discard. For other nouns, we may have to engage in some 
heavy reasoning as recorded above.

Second, the process can be unsystematic and, on occasions, chaotic. While engaging in this 
process, it is hard to determine whether we are really making progress toward our final goal. Results 
are not building up in a steady manner. At any moment, there may occur a new understanding that 
can profoundly disrupt the whole picture. Some of our reasonings may be tentative or based on 
shaky grounds (e.g., the reasoning about “contest”), and they need to be followed up. The neces-
sary follow-ups and subsequent resolutions are not something that can be easily planned for in a 
systematic manner.

Third, the method is error-prone. Because the method relies mainly on the analyst’s intuitive 
understanding of the application domain, and because of the unsystematic nature of the analysis 
process, it is easy to make mistakes.

Note: Regarding the above shortcomings—and others as well—natural language processing tools 
can be very helpful. Tools such as LIDA (Overmyer, Lavoie, and Rambow, 2001) and REVERE 
(Rayson et al., 2000), for example, can handle large amounts of textual information, extract and 
present keywords in context, analyze sentences and transform and present them in standard forms, 
and exhibit links between the elements of the domain model to textual information to facilitate 
insights and validations, and so on.

Going back to the case study, it can be seen that the domain class model given in White 
(1994) contains some serious inconsistencies. These inconsistencies are caused by what 
we call the problem of mutating concepts. This problem arises in situations where several 
concepts in the same application domain are referred to (by the domain experts) by the same 
term. Thus, in one part of the problem description (or an interview), the term is used with 
one particular meaning, and then often without warning, in another part of the description it 
is used with another meaning. This type of problem is very common. It is likely to occur in 
most nontrivial applications. We coin the term “mutating concept” to draw attention to the 
potential dangers.1

How does the problem of mutating concepts arise in the Gymnastics case study? Some of the 
terms, such as “club” and “gymnast,” have a single meaning and do not pose any problem. In 
contrast, other terms such as “competition,” “event,” and “team”—as it turns out—have multiple 
meanings and must be handled very carefully. For example, a careful reading of the problem 
statement reveals two concepts of “competition”:

•	 One refers to the “competition type” (such as “Women’s Senior Team”);
•	 The other refers to the “competition in a meet” (such as “Women’s Senior Team” in the 

“Town Invitational Meet”).

The two meanings of the term refer to two different—though closely related—concepts. The 
fact that the concepts are closely related actually increases the danger of confusion.

The concept of “team” requires even greater care. As explained in White (1994):

When a club enters a meet, must it enter all the competitions in the meet? The answer is “no.” 
Must a club have the same set of gymnasts entered in all competitions of a meet? Categori-
cally “no,” or you could not have men’s and women’s competitions. In fact, the club enters 
some subset of its members for a competition. This subset is a team. (White, 1994, p. 34)
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The quotation alludes to one meaning of “team.” But it is not the only one. In fact, the term 
can be used in three different senses:

•	 In the first sense, a team is a kind of team, for example, Women’s Senior Team. This concept 
of “team” turns out to be equivalent to the concept of “competition type.”

•	 In the second sense, a team is a team of gymnasts in a club, for example, Women’s Senior 
Team of the Flippers Club.

•	 In the third sense, a team is a team from a club that actually participates in a competition, 
for example, Women’s Senior Team of the Flippers Club for Town Invitational Meet. This 
is the concept of the term “team” explained in the above quotation.

The models in the book seem to confuse these different concepts of “team.”

•	 In Figures 4–9 (White, 1994, p. 50) and 5–4 (ibid., p. 60), the relationship cardinalities show 
that each gymnast can belong to only one team and each team can participate in many competi-
tions. These cardinalities are correct if the term “team” is used in the first or second sense.

•	 Then, in Figure 6–6 (ibid., p. 71), the relationship cardinalities show that a gymnast can 
belong to many teams (correct for “team” in the third sense), and a team can participate in 
many competitions (correct for “team” in the first or second sense).

To support the operations of the Gymnastics System, at least two concepts of “team” (the first 
and the last) have to be distinctly represented. As the given model stands, it does not capture and 
represent the first concept of “team” or “competition type.”

In addition to the problem of identifying classes and relationships, numerous constraints need 
to be identified and enforced. For example:

•	 A judge for an event in a meet must be qualified for that type of event.
•	 A gymnast participating in a competition as a member of team T must be of a certain age 

and gender, and must belong to team T’s club.
•	 Or, when a gymnast G participates in a competition C, and the competition has event E, then 

gymnast G must receive a score for event E of the competition.

Of these three constraints, only the first one is explicitly identified in White (1994). There is 
no evidence that any of them is actually enforced (e.g., by reading the collaboration diagrams 
and the class specifications).

USING ORM AS A SUPPLEMENTARY TECHNIQUE

Dealing with the Problem of Mutating Concepts

With ORM, when writing down the fact types, we have to specify the “reference schemes” (how 
“objects” are identified). In this way, related concepts can be easily distinguished and the problem 
of mutating concepts is overcome.

Consider, for example, the “Scoring of a Competition” report in Figure 9.3. In the ORM ap-
proach, we can start by reading a few facts from the report. For example, the fact related to the 
score of 41.5 for club Flippers may be expressed as follows:
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The Women’s Senior team from club Flippers for event Beam in meet Town Invitational 
receives the score of 41.5. (Sentence A)

This sentence forms a meaningful unit of information. Note that in order to talk about the score 
of 41.5, we need to include the other four data items (italicized in sentence A). For example, it is 
obvious that we cannot omit the club’s name from this sentence; if we do that, we get a meaning-
less sentence. To derive a fact type from sentence A, we note that 41.5 is the score that a team 
receives for an event. That is, the fact type is of the form:

Team ( ) . . . receives Score ( ) . . . for Event ( ) . . . (Sentence B)

In the context provided by sentence A, we can see clearly what we mean by a “team”: a “team” 
is “a team from a club for a competition type in a meet.” Therefore, it is identified by the combina-
tion of the club’s name, competition type’s name, and the meet’s name. And similarly, an event 
is identified by a combination of the meet’s name, the competition type’s name, and event type’s 
name. Adding the reference scheme to sentence B, we have the fact type (with informal notation 
being used for reference schemes):

Team (club name + competition type name + meet name) . . . receives Score (number) 
. . .
for Event (meet name + competition type name + event type name) . . . (Sentence C)

It is conceptually clearer to write the above fact type (sentence C) using the following “non-
standard” format in which square brackets are used to denote the reference schemes of the entity 
types they enclose:

Team ([Club] + [Competition Type] + [Meet]) . . . receives Score (number) . . . for 
Event ([Meet] + [Competition Type] + [Event Type]) . . . (Sentence D)

As a validity check, we note that sentence A can be rewritten in the format of sentence D as 
the sentence E below, which contains precisely the same information:

Team identified by Club Name “Flippers” and Competition Type Name “Women’s 
Senior Team” and Meet Name “Town Invitational” receives Score of 41.5 for Event 
identified by Meet Name “Town Invitational” and Competition Type Name “Women’s 
Senior Team” and Event Type Name “Beam.” (Sentence E)

(Note: In the above sentence, there is an important constraint regarding the Competition Type 
Name and Meet Name. The same values for them should appear as part of the identification of 
both the Team and the Event. This situation is sometimes known as “derived redundancy.” The 
constraint can be formally expressed if desired. Perhaps more important, in implementing any use 
case that involves the creation of facts of these fact types, we need to ensure that the constraints 
are satisfied. As far as the single fact type D is concerned, we can eliminate the redundancy using 
an objectified relationship. In doing so, however, concepts such as “team” may not be represented 
explicitly, which generally is not a desirable outcome.)

The key to the above analysis is actually sentence A. It provides a “context” in which we can 
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easily see that a team (which is an entity that participates in a meet) should be identified by a 
meet name, a competition type name, and the club name. With this reference scheme, the current 
concept of “team” can be clearly distinguished from other possible concepts of “team” that may 
also be relevant to this application domain: other concepts of “team,” if applicable, must have 
different reference schemes. Thus, in the practice of fact-based analysis, the problem of mutating 
concepts is resolved as a matter of routine: In forming the fact types, because we are required to 
specify the reference schemes explicitly, all the issues related to mutating concepts are naturally 
resolved. The reference schemes clearly identify the concept that a particular term stands for and 
clearly distinguish it from other concepts that may be expressed by the same term.

Identifying Fact Types on the Basis of Use Cases

We now consider the practical problem of how to efficiently identify fact types for large-scale 
information systems. In theory, we can identify fact types in any order. But in practice, especially 
for large-scale information systems, in order for the process to be carried out effectively, we need 
some strategy to divide and conquer. Our suggested divide-and-conquer strategy is based on a 
kind of ordering of use cases.

Theoretical considerations and experience have convinced us that the fact-identifying process 
can be carried out most effectively in the order of “data entry dependency.” Informally speaking, 
this is the order in which the data are stored in the system. This order entails a certain amount of 
“existence dependency.” For example, we must first create a particular meet before we can enter 
information about a competition that belongs to the meet (and this is what we mean by “data entry 
dependency”). So quite naturally, in identifying fact types, it makes sense—and it is much more 
efficient—to proceed in that same order; that is, we should identify the fact types related to meets 
before those related to competitions. This leads to the technique of considering use cases based 
on their order of dependency.

For the Gymnastics System, the fact types can be effectively identified by considering use 
cases in the following order: (1) Add a club, (2) Enter a gymnast, (3) Enter a competition type, 
(4) Enter an event type, (5) Enter a judge, (6) Create a meet, (7) Enter a competition (for a meet), 
(8) Enter an event (for a competition), (9) Enter judges for events, (10) Register a team (for a 
competition), and (11) Enter a score.

Note that for the purpose at hand, which is to identify fact types, it is sufficient in most cases 
to consider only those use cases that cause data to be added to the information base. The idea is 
to perceive a sequence of use cases or events, such as the one listed above, that can generate all 
the relevant fact types (except possibly for the derived fact types). Moreover, while identifying 
fact types generated by an event, we can also identify the constraints applied to these fact types. In 
the context of use cases, fact types and constraints are easier to identify (because of the temporary 
focus on specific use cases). The use cases can also be used to organize the recording of the fact 
types for documentation purposes.

The application of the suggested process for the Gymnastics case study is outlined below.

Fact Types About Clubs and Gymnasts

Add a club. When a club is formed and registered, the following fact types are generated:

Club (name) . . . has Phone (code) . . .
Club (name) . . . is at Address (text) . . .
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Enter a gymnast. This event generates the following fact types:

Gymnast (id) . . . has Name . . .
Gymnast (id) . . . was born on Date (dd/mm/yyyy) . . .
Gymnast (id) . . . is a member of Club (name) . . .

Fact Types About Competition Types, Event Types, and Judges

Enter competition types. By considering facts such as CompetitionType (name) “Women’s Senior 
Team” is for gender (code) “female,” and so on, we can identify the following fact types:

CompetitionType (name) . . . is for Gender (code) . . .
CompetitionType (name) . . . has lower limit of Age (years) . . .
CompetitionType (name) . . . has upper limit of Age (years) . . .

Enter event types. Note that this use case must be preceded by the “Enter competition type” use 
case. It generates the following fact type:

EventType (name) . . . is for Gender (code) . . .

Enter data about judges. Note that this use case must be preceded by the “Enter event types” use 
case.

Judge (name) . . . is on Phone (code) . . .
Judge (name) . . . is qualified for EventType (name) . . .

Fact Types About the Meets

Create a meet.

Meet (name) . . . is held on Date (dd/mm/yyyy) . . .
Meet (name) . . . is held at Location (name) . . .

Fact Type About Competitions, Events, and Judges for Events

Enter a competition for a meet

Competition ([Meet] + [CompetitionType]) . . . belong to Meet (name) . . .
Competition ( ) . . . is of CompetitionType (name) . . .

Enter an event for a competition

Event ([CompetitionType] + [EventType]) . . . belongs to Competition ( ) . . .
Event ( ) . . . is of EventType (name) . . .
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Enter judges for events

Judge (name) . . . is assigned to Event ( ) . . .
Constraint: If Judge j is assigned to Event e, and Event e is of EventType t, then Judge 
j is (must be) qualified for EventType t.

Note: As mentioned earlier, while identifying fact types, we are in a good position to identify the 
constraints applied to the fact types under consideration, and we can then express the constraints 
in terms of these fact types. In this section, to save space, we will record only the “less common” 
constraints. In particular, we omit “common” constraints such as uniqueness constraints (e.g., each 
club must be at one address) or mandatory constraints (e.g., each club must have a phone number). In 
practice, these common constraints, due to their importance, are routinely specified on the conceptual 
schema diagram, especially when tools such as VisioModeler (see ORM, 2007) are used.

Fact Types About the Team Registrations

Register a team and its members in a meet (for a competition). Similar to the notion that a team 
is a club in a competition, we have the concept of a “member” (for want of a better term) as a 
gymnast participating in a team. The inclusion of “member” makes it a little clearer to express, 
for example, in the case of the awarding of a score, which the gymnast receives as a member of 
a team rather than just as a gymnast of a club.

Team ([club] + [Competition]) . . . enter Competition ( ) . . .
Member ([Gymnast] + [Team]) . . . is Gymnast ( ) . . .
Member ( ) . . . belongs to Team ( ) . . .
Constraint (informally expressed): A gymnast (member) can belong to a team, which 
is registered for a particular type of competition, only if the gymnast is eligible (hav-
ing suitable gender and age) for that type of competition.

Fact Types About Scoring

The fact types related to scoring are listed below. Note that the last two fact types can be derived 
from the first fact type and other relevant fact types that have been identified earlier. For example, 
the score received by a gymnast for an event is calculated by discarding the highest and the lowest 
scores of the judges.

Enter a score

Judge ( ) . . . gives Score (number) . . . to Member ( ) . . . in Event ( ) . . .
Member ( ) . . . receives Score ( ) . . . for Event ( ) . . . [derived]
Team ( ) . . . receives Score ( ) . . . for Event ( ) . . . [derived]
Constraint (informally expressed): A gymnast participating in a competition must have 
a score for each event of that competition from each of the judges of the event.

Conceptual Schema Diagram

From the fact types that have been identified above, we construct the ORM conceptual schema 
shown in Figure 9.4.
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Figure 9.4  The ORM Conceptual Schema Diagram for Gymnastics System



158     Nguyen  and  Dillon

Validating by Traversing the Conceptual Schema Diagram

Once the conceptual schema diagram (CSD) has been constructed, it is useful to traverse it as 
a validation check, in order to verify that the relevant fact types are represented. Once again, 
the order of data entry comes in handy: we can traverse the CSD on the basis of this ordering. 
Thus, given the ordering: (1) Add a club, (2) Enter a gymnast (3) . . . , we can inspect the CSD 
and say to ourselves: “Obviously, I can enter facts about a club. Now I can enter facts about a 
gymnast including the club to which he or she belongs. That fact type is here on the diagram. 
And so on.”

As we go over the fact types in the CSD in this manner, we can also identify the constraints 
among the facts. For example, when it comes to register a judge for an event, not only do we need 
fact type Judge ( ) . . . is assigned to Event ( ) . . . , but we also have the constraint that a judge 
can judge only those events for which he/she is qualified.

Note: Another validation technique, which is not time-consuming at all, is to derive a relational 
schema from the ORM conceptual schema, and then subject it to an inspection. Again, this can 
be done systematically by walking through the use cases in the order suggested above and seeing 
how the relational schema can support the use cases. Experience has shown that by inspecting the 
relational schema, a lot of sense can be made of the data model, and mistakes, if any, can often 
be easily picked up.

Deriving a Domain Class Model for the Gymnastics System

Mapping attribute-free models to models with attributes has been an active area of research in ORM. 
On a formal basis, Bollen (2002) describes an elaborate procedure to map an ORM conceptual 
schema diagram to a UML class diagram. Alternatively, we can apply a schema abstraction based 
on major object types, which are derived from the constraint patterns in the given ORM model. 
A brief introduction to this technique is given in Halpin (2001), and a detailed treatment is given 
in Campbell, Halpin, and Proper (1996).

For this chapter, we choose to use a simple intuitive, and yet quite effective, approach to convert 
the ORM model for the Gymnastics System into a UML class model. The approach is based on 
two simple heuristic rules:

•	 Heuristic Rule 1. There are groups of fact types with a simple key attached to a common 
object type, which can be an entity type, a subtype, or an objectified relationship. Each of 
these groups, in most cases, represents a class that we are trying to identify.

•	 Heuristic Rule 2. Each of the remaining fact types, in most cases, represents a relationship 
type.

The heuristic rules work well in practice because, once we have constructed the ORM model, 
we will have gained a very clear understanding of the “information structure” of the application 
domain, that is, the kinds of things that we can say about it, and it is this clear understanding that 
allows us to effectively apply the heuristic rules to reach our goal.

For the Gymnastics case study, most of the fact types fall into groups with simple keys attached 
to a common object. Let us consider these groups.

1.	 Group attached to Club: “Club is at Address,” “Club has Phone.” Clearly, this group can 
be represented by the class Club.
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2.	 Group attached to Gymnast: “Gymnast has Name,” “Gymnast is born on Date,” “Gymnast 
is of Gender,” “Gymnast belongs to Club.” Clearly, we should have the class Gymnast, 
which would capture the first three fact types, and let the last one be represented by an 
association between Gymnast and Club.

3.	 Group attached to CompetitionType: Clearly, we should have the class CompetitionType 
to capture these fact types (related to gender, lower and upper age limits).

4.	 Group attached to EventType: “EventType has Name.” We should have the class Event-
Type to capture this fact type.

5.	 Group attached to Judge: “Judge has Phone.” We should have the class Judge.
6.	 Group attached to Meet: “Meet is on Date,” “Meet is at Location.” We should have the 

class Meet.
7.	 Group attached to EventType: “EventType has Name.” We should have the class Event-

Type to capture this fact type.

Note: So far, the choices have been very straightforward. In fact, we do not have any other 
choices. However, this is not the case for the next group of fact types.

8.	 Group attached to Competition: “Competition is for CompetitionType,” “Competition 
is in Meet.” Obviously, we can represent these two fact types by class Competition (let 
us call it choice A).

On the other hand, because a Competition is identified by the combination of Meet and Com-
petitionType, we can, if we so wish, represent the two fact types by an association between class 
Meet and class CompetitionType (let us call this choice B).

Though both choices are equivalent in the sense that both resulting models allow us to store the 
required information, we will prefer choice A because it represents the concept of “competition” 
explicitly. It is also important to note that this “competition” concept plays an important role in 
expressing other facts about the application domain (as will be seen next).

9.	 Group attached to Event: “Event is of Event Type,” “Event is for Competition.”

Suppose we have made choice A for the “Competition group” and have the class Competition 
at our disposal. What choices can we have in this case? An obvious choice is to introduce a class 
Event and represent the two fact types as associations between this class and classes EventType 
and Competition (let us call this choice A for this fact type group). But we could also represent 
the two fact types by an association between Competition and EventType (choice B).

Now, if we had made choice B for “Competition group” (group 8 above) and thus do not 
have class Competition to work with, a possible choice would be to represent the fact types by 
a ternary association between Meet, CompetitionType, and EventType (choice C). Here, the 
implicit representation of the concept of “Competition” makes it harder (and messier) to capture 
the concept of “event.”

Similar to the previous case, we prefer choice A, which explicitly represents the concept of 
“event.”

10.	 Group attached to Team: A similar sort of observation applies. Our preference is to in-
troduce the class Team.

11.	 Group attached to Member: Similarly, we would introduce the class Member.
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Now, there remain three binary fact types without a simple key and a quaternary fact type. The 
three fact types (EventType is for Gender, Judge is qualified for EventType, Judge is assigned to 
Event) are to be represented by three associations. The quaternary fact type can be represented by 
class Award (or Score)—though an association class is also a possible choice.

With the choices that we have made, where most concepts are explicitly represented, we arrive 
at the class diagram shown in Figure 9.5.

Additional Insight into Possible Class Diagrams

The above simple approach clearly shows the considerable extent to which the fact-based model 
can facilitate the construction of the class model. Furthermore, the analysis also leads to an 
interesting consequence, that is, we can have an understanding of a range of possible domain 
models.

Here is how we arrive at this understanding. First, we note that for the model in Figure 
9.5, every important concept is represented explicitly. Now, if we go to the other extreme and 
represent the fact type groups for Competition, Event, Team, Member (groups 8–11) implicitly 
as associations, we would get the model shown in Figure 9.6. Though strange-looking and 
not intuitively appealing, it is still a legitimate domain model in which information about the 
application domain is represented as objects (instances of classes) and links (instances of as-
sociations). The two models presented are essentially the two extremes. Other possible models 
are those between these two extremes, depending on how we choose to represent certain groups 
of fact types.

A COMPARISON ON THEORETICAL GROUNDS

Having covered the practical use of the text analysis and the fact-based approach, we now examine 
and contrast their basic premises. The comparison should provide a deeper insight into the differ-
ences between the two approaches.

Figure 9.5  A Domain Model for the Gymnastics System: The Preferred Model
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A Typical Procedure of Text Analysis Method

The following is a summary of the description of the text analysis method given in Rumbaugh 
and colleagues (1990, p. 153). It is a typical procedure and has been adopted by various other 
authors. It consists of the following steps:

•	 Extract the nouns and noun phrases from the problem statement.
•	 Make a list of candidate classes.
•	 Separate the good classes from the bad ones. Eliminate the following: (1) Redundant classes, 

(2) Irrelevant classes, (3) Vague classes, (4) Attributes, (5) Operations, (6) Roles, and (7) 
Implementation constructs.

How the Procedure Would Perform in Practice

Upon reflection, it can be seen that the procedure is based on the following premises:

•	 Premise 1: The classes for the analysis model can be found among the nouns and noun phrases 
contained in the problem statement.

•	 Premise 2: The nouns and noun phrases contained in the problem statement can be a valid 
or an invalid candidate class. The way to distinguish between them is to apply a number of 
criteria (such as the ones in the procedure above).

The first premise places a lot of responsibility on the problem statement. How should the 
problem statement be written so that it can fulfill these responsibilities—that is, to ensure that it 

Figure 9.6	 Another Domain Model for the Gymnastics System: With Minimum Number 
of Classes
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can supply an exhaustive, or at least nearly so, list of potentially valid candidate classes for the 
analysis model? How do we tell whether or not a given problem statement is adequate for this 
purpose? And what can we do if it is inadequate?

Another consequence of the first premise is that, unless appropriate tools are used, there would 
be problems with scaling up. If the problem statement is written in detail for a large system, there 
will be a large number of “good” nouns and a huge number of “bad” ones. The list of candidate 
classes could be quite long. The elimination process, being unsystematic, would be quite un-
manageable. As mentioned earlier, linguistic analysis tools could be very useful for dealing with 
these problems.

As to the second premise, how effectively can the suggested criteria be applied to eliminate 
improper candidate classes? Let us consider the criteria suggested by OMT.

Relevant Classes

What is meant by “relevant”? In Rumbaugh and colleagues (1990) (from which the above proce-
dure is taken), the following explanation is given:

If a class has little or nothing to do with the problem, it should be eliminated. This involves 
judgment, because in another context the class could be important. (Rumbaugh et al., 1990, 
p. 155)

Thus, the explanation defines “irrelevant” as “having little or nothing to do with the problem.” 
But this kind of elaboration offers very little help. Indeed, we can ask, if a concept has little or 
nothing to do with the problem, why is it included in the problem statement at all? More impor-
tant—How can we tell if a concept that occurs in the problem statement has little or nothing to 
do with a problem?

Let us try to look at this issue from the fact-based point of view. A very important property of 
those classes to be included in the domain class model is that they carry information required for 
the operation of the enterprise. This is obviously true, for example, for the domain model of the 
Gymnastics System. The analysis model has classes such as Club, Gymnast, CompetitionType, 
EventType, Judge, Meet, Team, Score, and so on. Each of these classes carries certain information 
required for the running of the competitions.

To be clearer on this point, let us consider an application that manages bank accounts. When 
we observe what is happening in the real world, we see, for example, that people use automatic 
teller machines (ATMs) to carry out banking transactions. Then, should we include ATM in the 
domain class model? The answer is: it depends! If we need to keep records of the ATM involved 
in the transactions, then the answer is definitely “yes.” But suppose we do not need to do that; 
then the answer is “no.” In the latter case, the ATM will play exactly the same role as a desk in a 
library, or a screen on a computer terminal. It may or may not be modeled as a control class, but 
certainly not as a domain class.

From the fact-based perspective, clearly if a class carries certain information required for the 
enterprise’s operation, then it must appear in some fact type. Thus, we have the following char-
acterization for “relevant”: A concept is relevant for the domain model if, and only if, it appears 
in at least one elementary fact type.

Thus, “relevant” is linked ultimately to “information.” If a concept represents some sort of 
information to be maintained by the system, then it is relevant and it should be included in the 
domain model as a class, an attribute, or a relationship.



DOMAIN  MODELING  OF  OBJECT-ORIENTED  INFORMATION  SYSTEMS     163

Redundant Classes

What is a redundant class? The following explanation is given:

If two classes express the same information, the most descriptive name should be kept. For 
example, although customer might describe a person taking an airline flight, passenger is 
more descriptive. (Rumbaugh et al., 1990, p. 153)

But in general, how do we know that two terms express the same concept? For example, in 
the Gymnastics System, how do we know whether or not “competitor” and “member” of a team 
refer to the same kind of objects? To find out, we need to carefully examine how these terms are 
actually used by the stakeholders in the context of the application domain. But as to how we are 
to carry out this examination, the text analysis approach seems to leave it entirely to the initiative 
of the analyst.

The fact-based approach offers more definite criteria for discrimination. A concept (or an ORM 
entity type) must have a reference scheme (how we identify an instance of this entity type), and 
it must participate in a number of fact types. With that in mind, we can arrive at the following 
clearer, and more workable, characterization: Two terms represent the same concept/class if their 
instances have the same reference scheme and participate in the same set of fact types.

Vague Classes

This point is explained as follows:

A class should be specific. Some tentative classes may have ill-defined boundaries or be too 
broad in scope. For example, Recordkeeping provision is vague. In the ATM problem, this 
is part of Transaction. In other applications, this might be included in other classes, such as 
Stock sales, Telephone calls, or Machine failures. (Rumbaugh et al., 1990, p. 155)

But as before, how do we recognize that a concept is ill-defined or too broad in scope? A few 
examples of such classes, as given in the explanation above, will not be of much help when an 
analyst faces a “vague” concept (which he or she may not recognize as such) in the analysis of 
some particular application domain (with which he or she may not be quite familiar).

From the fact-based perspective, a “vague” concept, such as recordkeeping or recordkeeping 
provision, if it is indeed vague, will not appear in a fact type. Why? Because at the very least we 
have to ask: how are we going to identify an instance of this concept (its reference scheme)? If 
we cannot find a reference scheme, then indeed it is vague or, in the language of the fact-based 
approach, it is not a proper entity, and it will not appear in any fact type. On the other hand, if 
there is some reference scheme for such a concept, then it may well represent a legitimate class 
no matter how strange the term may sound to us. Thus, we have: If a concept is vague (ill-defined, 
not representing a valid entity), then it will not appear in any fact type, and therefore will not be 
in the domain model.

Attributes

How do we know, or decide, whether or not a concept is an attribute? The following advice is 
given:
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Names that primarily describe individual objects should be restated as attributes. For ex-
ample, name, age, weight, and address are usually attributes. If the independent existence 
of a property is important, then make it a class, not an attribute. For example, an employee’s 
room would be a class in an application to reassign rooms after a reorganization. (Rumbaugh 
et al., 1990, p. 155)

Should “independent existence” be used as a basic criterion to distinguish between attributes 
and classes? If something, let us call it A, cannot exist without something else, let us call it B, 
then should we make A an attribute of B?—Not necessarily! We frequently have objects whose 
existence requires the existence of another kind of object (e.g., copies of books in a library cannot 
exist without the abstract books, often identified by their ISBN).

So really, how can we decide whether a concept should be an attribute or a class? Let us look 
at this issue from the fact-based approach. Consider, for example, the case where we have fact 
of type:

A Person (name) . . . was born in a City (name) . . .

Should City be an attribute? The answer is: it depends! If City is involved in no other fact type, 
then it is reasonable to answer “yes.” However, if it is also involved in other fact types such as

City (name) . . . has Postcode (code) . . .
City (name) . . . has Population (nr+) . . .

then it is no longer feasible to represent City as an attribute. Therefore, whether or not a concept 
should be regarded as an object depends largely on the relationships it has with other concepts. 
More precisely, the issue of whether a concept should be represented as an object or an attribute 
can be resolved only by considering (explicitly or implicitly) (1) all the fact types in which the 
concept is involved, and (2) whether or not some of these fact types contain other information 
about the concept.

Operations

The following advice is given:

If a name describes an operation that is applied to objects and not manipulated in its own 
right, then it is not a class. For example, a telephone call is a sequence of actions involving 
a caller and a telephone network. If we are simply building telephones, then Call is part of 
the dynamic model and not a class. [ . . . ] An operation that has features of its own should 
be modeled as a class, however. For example, in a billing system for telephone calls a Call 
would be an important class with attributes such as date, time, and destination. (Rumbaugh 
et al., 1990, p. 155)

Clearly, from the fact-based point of view, the above advice is an obvious consequence of the 
following simpler and more general guideline: We do not need to consider whether or not a name 
is an operation. If a concept, irrespective of whether or not it normally indicates some sort of 
operation, carries information to be maintained, that is, it appears in some fact type, then include 
it in the domain model. Otherwise, do not.



DOMAIN  MODELING  OF  OBJECT-ORIENTED  INFORMATION  SYSTEMS     165

Roles

The following advice is given:

The name of a class should reflect its intrinsic nature and not a role that it plays in an as-
sociation. For example, Owner would be a poor name for a class in a car manufacturer’s 
database. What if a list of drivers is added later? What about persons who lease cars? The 
proper class is Person (or possibly Customer), which assumes various different roles, such 
as owner, driver, and lessee. (Rumbaugh et al., 1990, p. 155)

But in practice, we do model Owner, Driver, or Lessee as classes, most likely as subclasses of 
Person, or BusinessEntity (because an owner can be a company). So what can really help us to 
decide whether a particular name represents a role rather than a class?

From the fact-based perspective: We do not need to consider whether or not a name represents 
a role. We need to be concerned only with whether the name would appear in some fact type and 
how it is identified. Moreover, the technique of subtype analysis (which is done in terms of fact 
types [see Halpin, 2001] would take care of the case where a certain object appears to play dif-
ferent roles.

Implementation Constructs

Further explanation is given as follows:

Constructs extraneous to the real world should be eliminated from the analysis model. They 
may be needed later during design, but not now. For example, CPU, subroutine, process, 
algorithm, and interrupt are implementation constructs for most applications [and should 
be excluded from the analysis model]. . . . (Rumbaugh et al., 1990, p. 155)

From the fact-based point of view: Nouns that represent implementation constructs (CPU, sub-
routine, etc.), though they may appear in the problem statement, will not appear in any fact type 
and therefore will be automatically excluded from the domain model.

Note: Another commonly given piece of advice concerns the kinds of things we may be look-
ing for as potential candidates for domain classes. In Bennett, McRobb, and Farmer (2002, p. 
184), for example, we are advised to look for the following kinds of things: (a) People (e.g., Mr. 
Smith); (b) Organization (e.g., Jones & Co.); (c) Structures (e.g., teams, projects); (d) Physical 
things (e.g., car, truck); (e) Abstractions of people (e.g., employee, supervisor); (f) Abstractions 
of physical things (e.g., vehicle, goods); (g) Conceptual things (e.g., project, qualification); (h) 
Enduring relationships (e.g., sale, contract). But it can easily be seen that this kind of advice 
has quite limited use. After all, a concept such as “judging panel,” which fits really well into the 
category of “structure,” is rejected in the analysis of the Gymnastics case study. Similarly, it is 
also the case for the rejected concept of “contest,” which fits well into the category of “enduring 
relationship.” Clearly, the categories enumerated above can be used to classify the kinds of things 
that a concept (or a noun) may fall into, but that “classifying” ability cannot be a means of telling 
us which concept (or noun) should or should not be kept as candidate domain classes. As a mat-
ter of fact, note that most nouns, regardless of whether or not they can be candidates for classes, 
would belong to one or more of the suggested categories.
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Comparing the Underlying Perspectives

We have seen that, by being aware of the information about the application domain that the system 
must maintain, we can eliminate many of the issues arising from the text analysis approach. Let 
us pursue this point a little further.

It is clear that whether or not a concept expressed by a noun can be a class depends on the kind 
of information it carries and the kinds of relationships it has with other concepts. In other words, 
a noun derives its meaning from the context in which it is found. Its significance depends on the 
relationships it has with other concepts in a network of concepts. It is very similar to the way a 
concept derives its meaning from the semantics network in which the concept occurs.

It can be observed that the text analysis approach generally does not effectively exploit the 
interrelation upon which the significance of the concept is based. In contrast, the fact-based 
approach seeks to exploit that valuable source of interrelations, and does so effectively, with 
a clear focus. All we ask consistently is: “What are the facts about the application domain 
that the system is expected to maintain?” (And we would answer that question by examining 
the problem statement, or more effectively, by examining the user views such as input/output 
screens, reports, etc.)

Questions regarding facts and fact types are much more fundamental and much easier to 
answer. Consider, for the sake of argument, a concept or a noun “X”; instead of asking “Is X 
a class?” or “Is X an attribute?” we simply ask, “Do we need to maintain some information 
about X?” or “Are there any fact types involving X?” To take an example, if “X” is “Customer,” 
then we do not have to ask “Is ‘customer’ a class?” or “Is it an attribute?” or “Is it a role?” 
We ask, “What is the information we maintain for a customer?” or “Does ‘customer’ appear 
in any fact type?” These questions, being directly related to matters of information, are more 
to the point. They are also easier to answer. Clearly, if we cannot answer the latter questions 
(“Can we have a fact type with ‘customer’ in it?”), we would have no hope of answering the 
former ones (“Is ‘customer’ a class?” or “Is ‘customer’ an attribute?” etc.). In fact, with ORM, 
in most cases, we do not have to consciously ask such questions; by working with the user’s 
data views (reports, forms, screens), we can read the facts or fact types off the user views. The 
fact-oriented viewpoint of ORM allows us to work directly with the information content aspect 
of the application domain.

SUMMARY

In this chapter, we have examined in detail the text analysis approach to class and relationship 
discovery, and pointed out several problems with it. We have also shown how, with the use of the 
fact-based approach, we can eliminate or effectively handle these problems. We have illustrated 
how the fact-based analysis can be incorporated into the overall object-oriented domain model-
ing process. In particular, we have demonstrated (a) how the order of data entry dependency can 
be used in identifying and organizing the fact types; (b) how the conceptual schema (that is, the 
fact-type model) can be validated in several simple but effective ways; and (c) how to convert the 
conceptual schema into a domain class model. 

In addition, we have delved deeper into the issue and examined the basic premises of the text 
analysis and the fact-based approach. We have pointed out that the significance of a concept depends 
on its relationships with other concepts in a semantic network (expressed in terms of fact types) 
and that the fact-based approach is one that effectively exploits these all-important relationships 
with a clear and consistent focus.
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NOTE

1. The problem of mutating concepts is closely related to what is known in the literature as the problem of 
“homonym.” However, most treatments of the “homonym” problem are mainly concerned with discovering 
and reconciling the locally valid uses of the same name in different models to represent different concepts. 
In such cases, the concepts in question are modeled correctly in each of the models. The mutating concept 
problem is about a different kind of situation where the same term is used for different concepts in the same 
discourse.
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Chapter 10

SYSTEMATIC DERIVATION AND  
EVALUATION OF DOMAIN-SPECIFIC AND 

IMPLEMENTATION-INDEPENDENT  
SOFTWARE ARCHITECTURES

K. Suzanne Barber and Thomas Graser

Abstract: Software architectures have been demonstrated to be effective representations for ex-
pressing system stakeholder concerns and prescribing software systems to satisfy those concerns. 
However, research is only beginning to emphasize systematic processes for deriving and evaluating 
those architectures from stakeholder requirements. The research described in this chapter offers 
a systematic process and a supporting tool, Reference Architecture Representation Environment 
(RARE), for deriving and evaluating a high-level software architecture, the Domain Reference 
Architecture (DRA), such that the resulting architecture reflects quality goals prioritized by the 
architect, including reusability, maintainability, performance, integrability, reliability, and com-
prehensibility. The DRA is an implementation-independent architecture composed of Domain 
Reference Architecture Classes (DRACs), each of which specifies some portion of domain data 
and functionality. Thus, the essential DRA derivation process consists of identifying DRACs and 
allocating domain data and functionality to those DRACs. While disciplines such as object-oriented 
analysis and design offer selective guidance for deriving class-based architectures, the current state 
of the art is largely ad hoc. The approach used in this research focuses on defining a deterministic 
transformation, such that for a given model of functional and data requirements and a prioritized 
set of architect quality goals, the derivation process yields a particular DRA structure, and the 
evaluation of that DRA with respect to quality goals is consistent.

Keywords: Software Architecture, Software Engineering

INTRODUCTION

Software architectures have been used to represent a variety of concerns in the software develop-
ment process, including requirements, domain-specific knowledge, implementation structure, and 
component connectivity (Bass, Clements, and Kazman, 1998; Tracz, 1995). To accommodate these 
concerns, a variety of architecture representations have been proposed (Clements, 1996). In an ef-
fort to promote large-scale reuse over time, one form of architecture, the “reference architecture,” 
has proved to be particularly effective for prescribing a series of systems within a domain without 
constraining developers by current technology. The reference architecture is designed to describe 
anticipated system component functionality and relationships between those components without 
specifying implementation details (Gacek, 1995). Avoiding such details allows the architecture 
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specification to be reused for multiple application instantiations over time as new and innovative 
technologies become available.

While there has been a definite trend toward utilizing all forms of software architecture 
(including reference architectures) as analysis frameworks during the development cycle, re-
search has only recently emphasized formalizing the derivation and concurrent evaluation of 
these architectures (Bosch and Molin, 1999; Egyed, Gruenbacker, and Medvidovic, 2000). The 
objective of a formal derivation and evaluation process is to generate an architecture capable of 
fulfilling a variety of concerns expressed by stakeholders. These concerns may include exhibiting 
a particular behavior at runtime, performing acceptably on a particular piece of hardware, and 
being easy to customize. The architect translates these concerns into a series of system qualities, 
such as reusability, flexibility, performance, comprehensibility, maintainability, and reliability 
(Bass, Clements, and Kazman, 1998), and uses the software architecture as a framework for 
analyzing a potential system in the context of these qualities. Since an architecture is intended 
to prescribe a software system, the resulting system’s ability to respond to these qualities is 
strongly impacted by decisions made during the architecture derivation process. However, 
given that inherent conflicts exist between system qualities (e.g., performance often opposes 
reliability), it is rare for a single architecture to be capable of satisfying all qualities effectively 
without some tradeoff (Bosch and Molin, 1999). Combining this observation with the realization 
that each architect tends to approach the derivation problem differently further underscores the 
need for capturing architect rationale as an essential part of the derivation process. Moreover, 
rationale must be supported by formal evaluation approaches to provide evidence that a given 
architecture adheres to qualities of interest (Perry and Wolf, 1992). The combined rationale and 
evaluation results become valuable artifacts complementary to the architecture itself, facilitating 
knowledge transfer and helping to ensure that the architecture evolves in the spirit intended by 
the original architect.

In response to the motivations above, the research described in this chapter focuses on devis-
ing a formal process and developing a supporting tool, Reference Architecture Representation 
Environment (RARE), to guide the system architect in deriving a high-level software architec-
ture, the Domain Reference Architecture (DRA), designed to capture domain functional and data 
requirements intended to be domain-specific/technology-independent, and thus reusable across 
implementations within a domain.1

Software Architectures and Their Derivation and Evaluation

Every software system has an architecture, since every system can be shown to be composed of 
components and relations among those components (Bass, Clements, and Kazman, 1998; Jacob-
sen, Kristensen, and Nowack, 1999). In fact, a system may be described by multiple architectures, 
each providing a different perspective at a different level of abstraction. Depending on the content 
being conveyed by the architecture description, the semantics of a component and corresponding 
relations will be different. Figure 10.1 depicts two similarly appearing architectures using the “box 
and line” notation often seen in architecture diagrams (Barber, Graser, and Holt, 2001; Bass, Cle-
ments, and Kazman, 1998; Gujral, Ahn, and Barber, 2005; Shaw and Garlan, 1996). The “Domain 
Architecture” on the left captures domain modeling knowledge, where a component represents 
a class of task performers in the health care domain, each of which is responsible for selected 
domain tasks (Barber, Graser, and Holt, 2001). Component relations in this example describe data 
dependencies between performer classes. In the “Implementation Architecture,” a component 
symbolizes a single machine with relations representing network connections among machines 
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(Barber, Graser, and Holt, 2001). Each architecture emphasizes particular types of information, 
while certain details are distilled away for clarity (Barber, Graser, and Holt, 2001).

Architectures at different levels may also be related. For each Domain Architecture conveying 
functionality from an implementation-independent point of view, there may be many associated 
Implementation Architectures that not only represent domain data and functionality but also con-
sider specific implementation requirements and site installation constraints.

Taking into account all forms of software architectures, the software architecture derivation 
process can be generalized as (1) identifying components appropriate for a given level of abstrac-
tion, (2) describing their properties, and (3) determining their relationships, such that the resulting 
architecture prescribes a system that satisfies selected quality attributes.

Architectural qualities are typically grouped into major categories based on how they are ulti-
mately measured. Bass and colleagues (1998) suggest four categories: (1) discernible at runtime, 
(2) not discernible at runtime, (3) business qualities, and (4) relevant to the architecture itself. 
Table 10.1 lists typical quality attributes along with their associated categories.

Regardless of when a quality attribute is measured (e.g., reliability and performance are observ-
able only at runtime), the software architecture of a system can be structured in such a way as to 
promote or inhibit certain qualities (Bass, Clements, and Kazman, 1998; Kavi and Browne, 1999). 
Thus, the architect has the ability to tailor an architecture to act as a “blueprint” for building one 
or more systems that exhibit selected qualities.

Certainly, it would be optimal to achieve all of the attributes listed in Table 10.1. However, 
inherent tradeoffs exist between quality attributes, such that no quality can be maximized without 
sacrificing some other quality. Changes in architecture content or structure to improve a given 
quality often affect other qualities of interest (Bass, Clements, and Kazman, 1998; Kazman et al., 
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1998; Shaw and Garlan, 1996). For example, an architecture intended to emphasize reusability 
may be organized as small, cohesive modules. On the other hand, focusing on performance may 
suggest optimizing data flow between critical functions that might be separated in a more reusable 
architecture. Thus, the decision to colocate critical functions during architecture derivation may 
increase performance in systems built from the architecture blueprint at the expense of greater 
reusability of system modules.

To manage such tradeoffs while yielding an acceptable architecture, the derivation process must 
be capable of maximizing satisfaction of the architecture based on the priorities of competing 
quality attributes. As the architect makes decisions at each stage during the derivation process, 
choices must be made when conflicts arise. Because there are likely many possible architectures 
for a given set of constraints, the capture of rationale for such choices becomes an integral part 
of the architecture and the derivation process (Perry and Wolf, 1992).

Given the categories of quality attributes shown in Table 10.1, a variety of architecture evaluation 
methods have proved useful during the derivation process. Methods range from “static” approaches—
such as (1) measuring properties of architecture and component structure (Li-Thiao-Te, Kennedy, and 
Owens, 1997), (2) rating an architecture based on its ability to support various scenarios (Kazman 
et al., 1994, 1998), and (3) subjectively judging an architecture with respect to specific attributes 
(Kalyanasundaram et al., 1998)—to “dynamic” approaches such as simulation of an architecture 
specification (Bose, 1999).

The objective of this research is to define a formal process to derive a high-level Domain 
Reference Architecture analogous to the “Domain Architecture” shown in Figure 10.1 from a 
computational Domain Model (DM) such that the resulting architecture prescribes systems exhib-
iting a prioritized set of quality attributes (Barber, Graser, and Holt, 2001; Graser, 2001). In the 

Table 10.1

Typical Software Architecture Quality Attributes

Quality attribute Description Category

Reusability Degree to which system’s structure or some of its 
components can be reused

Not discernible at runtime

Integrability Ability to make the separately developed 
components of the system work together

Not discernible at runtime

Maintainability Ability to make changes quickly and cost effectively Not discernible at runtime

Reliability Ability of the system to keep operating over time Discernible at runtime

Performance Responsiveness of the system Discernible at runtime

Cost System development cost Business quality

Comprehensibility Ease by which architecture can be understood by 
stakeholders

Relevant to the architecture

Completeness Scope of architecture content as a percentage of 
source documents

Relevant to the architecture

Correctness Accuracy and consistency of content validated 
against source documents

Relevant to the architecture

Source: Bass, Clements, and Kazman (1998).
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context of this research, a “formal” process can be considered to be one that is “explicitly defined 
and repeatable” (Merriam-Webster, 2005). This is in contrast to existing approaches for software 
architecture derivation from requirements, which are essentially ad hoc.

The Domain Reference Architecture

The DRA is composed of Domain Reference Architecture Classes (DRACs), each of which 
specifies some portion of domain data and functionality (Barber et al., 2000; Graser, 2001). These 
classes and their relationships become a reusable blueprint that guides subsequent development 
efforts in terms of:

1.	 Functional, data, and timing requirements—the domain functions, data, and ordering of 
functions to be satisfied, and

2.	 Prescribed architectural structure—the relationships between DRACs that dictate the 
relationships between participating applications implementing those DRACs.

Since it is likely that DRACs will be instantiated by different implementation solutions each 
time the blueprint is reused for a new system development effort (e.g., computer programs, 
hardware devices, personnel), the DRA representation is designed to be highly implementation 
independent.

The functionality and data allocated to a DRAC and the relationships between a DRAC and 
other DRACs are represented in the three submodels shown in Figure 10.2: the Declarative Model 
(DRAC D-M) defines the attributes (i.e., data and events) and services (i.e., functionality) that 

DECLARATIVE MODEL (D-M)
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Figure 10.2  Domain Reference Architecture Class (DRAC) Representation
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should be offered by an instance of the DRAC specification; the Behavioral Model (DRAC B-M) 
describes the behavior expected from an instance of the DRAC through a high-level state chart; 
and the Integration Model (DRAC I-M) defines the constraints and dependencies between DRAC 
instances resulting from the distribution of dependent domain functions across DRACs. These 
dependencies are based on the input and output of data and events as well as the clustering of 
classes into subsystems to represent domain functionality typically colocated.

The next section provides a detailed explanation of the DRA derivation process, followed by a 
discussion of related work and the benefits and limitations of RARE and the DRA in the context 
of a standard software engineering process. The chapter then concludes with summary remarks 
and future work.

DERIVING THE DOMAIN REFERENCE ARCHITECTURE USING THE 
REFERENCE ARCHITECTURE REPRESENTATION ENVIRONMENT

The RARE DRA derivation process is positioned among phases associated with typical software 
engineering methodologies as shown in Figure 10.3 (Barber, 2004; Barber and Graser, 2000a, 
2000b; Barber, Graser, and Jernigan, 1999; Barber et al., 1999; Graser, 2001). DRA derivation 
follows requirements acquisition, modeling, refinement, and synthesis activities that yield a DM, 

Figure 10.3  Domain Reference Architecture Derivation Positioned Among System 
Development Activities
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a computational representation of Domain Requirements. The resulting DRA becomes input to 
system design activities when technology-related decisions are made with respect to implementa-
tion of selected functionality in the DRA.

As a product of requirements acquisition, modeling, and refinement activities, the DM provides 
RARE with a single, computational requirements specification. RARE then guides the architect in 
restructuring DM information by defining a collection of DRACs to which domain functionality 
and data are assigned.

Figure 10.4 summarizes the transformation from the DM to the DRA. The DM representation is 
designed to accommodate requirements capture, synthesis, and verification. Specifically, the DM 
is a “functional” model centered around domain tasks and their relationships, often the focal point 
of requirements acquisition sessions with domain experts. However, the DRA is designed to act 
as a developer and integrator specification, where DRACs encapsulate domain requirements to be 
satisfied by applications. Since the DM is the primary source for DRA content, the transformation 
should be lossless, resulting in direct traceability from DRA model elements (e.g., classes, data, 
events, tasks) back to DM model elements.

While the DRA does not incorporate any additional domain requirements, the DRA derivation 
process is nonetheless considerably complex due to the many possible configurations when defining 

Figure 10.4  DRA Derivation as a Transformation from a Functional Representation to a 
Class-Based Representation
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DRACs and allocating data and functionality to those DRACs. Since these allocation decisions 
are driven by quality goals prioritized by the architect (reusability, integrability, maintainability, 
reliability, performance, and comprehensibility), the resulting DRA also suggests a structure (to-
pology) that reflects given qualities. An important premise of this work is that designs satisfying 
DRA content requirements (i.e., domain functionality and data) and adhering to the DRA topology 
will likewise exhibit the qualities possessed by the DRA. In summary, the DRA specifies two 
forms of requirements to be satisfied by new or existing applications:

1.	 Content Requirements: the collections of data and functionality in DRACs to be provided 
by an application, and

2.	 Topology Requirements: the integration requirements specified in the DRAC I-M that 
describe dependencies between DRACs, and therefore dependencies between respective 
applications implementing those DRACs.

The complexity of the allocation process is rooted in a number of issues. These issues are 
described below.

How should derivation proceed to create an architecture exhibiting selected qualities?

Given that different architectures are appropriate for different systems and domains, not all ar-
chitects emphasize the same quality attributes, and the architecture may take on different forms 
depending upon which quality attributes are emphasized. One architect may hold the opinion 
that reusability should be the primary driver for class definition, while another may place greater 
emphasis on the comprehensibility of the overall class model.

How should conflicts between qualities be managed?

While it would be ideal to create an architecture capable of maximizing all qualities of interest, 
inherent conflicts exist between qualities, making this infeasible. For example, while both reus-
ability and performance may be important to the architect, the optimal set of reusable classes 
may look completely different from the optimal set of classes resulting from an emphasis on 
performance, and resolutions/tradeoffs made by respective architects can/will differ (Bosch and 
Molin, 1999). The architect must manage these conflicts, making tradeoffs as necessary. Certainly, 
emphasizing one quality over another is one consideration when resolving such conflicts. In at-
tempting to resolve these conflicts, the architect may benefit from exploring multiple possible 
architectural structures.

How can the architecture be evaluated with respect to the qualities selected, and how 
does the architect know when quality goals have been achieved?

Certainly, if the architect intends to emphasize particular qualities, there must be some means 
for evaluating the architecture with respect to these qualities. While intuition may often drive 
architecture derivation, an intuitive approach is unable to provide evidence that qualities are be-
ing met and that systems generated from the architecture will exhibit those qualities. To improve 
upon an intuitive approach, quantitative evaluation is necessary to justify the architect’s decisions. 
As with any software engineering process, architecture derivation cannot be improved without a 
measurement mechanism to provide feedback to the architect (Basili, Briand, and Melo, 1996). 
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While there are various metrics related to architectural structure that are easily computed (e.g., 
number of classes, number of services per class, degree of coupling), evaluating with respect to 
high-level qualities such as reusability and maintainability is not so straightforward. The challenge 
is to establish explicit correlation between specified qualities and measurable characteristics of 
derived architectures. Such a correlation will also help determine the contribution of individual 
DRA elements to the satisfaction of specific quality attributes.

By combining features such as derivation heuristics, conflict management, formal evaluation, 
and rationale and process capture, the RARE process has evolved architecture derivation from 
an ad hoc activity to a deterministic process. Nonetheless, it is unrealistic to expect that such a 
process can fully automate architecture derivation. Even with such support, derivation remains 
an iterative, exploratory process, where architect involvement is essential. The RARE process is 
designed to reduce the burden of managing information during iterative derivation, yet allow the 
architect to contribute where automation is not suitable.

The following subsections elaborate on the RARE derivation approach, addressing the steps 
in the formal derivation process, the supporting representations that drive derivation based on the 
qualities selected by the architect, conflict detection and resolution, and methods for evaluating 
the architecture with respect to selected qualities using relevant metrics.

RARE Formal DRA Derivation Process

Architecture derivation is an iterative process analogous to a guided search of the space of possible 
architectures for a given DM. The search begins with a complete Domain Model and an empty 
DRA. The search space represents (1) the degree to which the DRA covers the information repre-
sented in the DM and (2) the many possible structuring options available to the architect given a 
particular set of desired quality goals. A search path represents a sequence of derivation iterations, 
where each DRA version builds upon the one produced in the previous iteration.

The detailed steps involved in DRA derivation are shown in Figure 10.5. The process is divided 
into two phases: (1) Plan-Generation—when goal priorities are assigned and a “Derivation Plan” 
is generated and (2) Plan-Execution—when strategies in the plan are applied and the resulting 
DRA is evaluated with architect oversight. Figure 10.5 outlines the steps associated with each 
phase in a process flow diagram. Boxes in Figure 10.5 symbolize processes, black arrows represent 
process flow, and gray arrows indicate data flow. The diagram distinguishes between processes 
associated with Plan-Generation and those related to Plan-Execution. Font styles in the process 
boxes indicate performer: italics—the architect; underlined—RARE; both italics and underlined—
a joint process between the architect and RARE. The following section describes the two phases 
and their constituent processes.

DRA Plan-Generation

During DRA Plan-Generation, the architect selects and prioritizes goals from the RARE knowl-
edge base (KB) (described in a subsequent section). From the prioritized goals, RARE builds the 
Derivation-Plan and subsequently prunes conflicting strategies. The processes in this phase (see 
Figure 10.5) are described below:

1.	 Select and Prioritize Goals Based on Qualities Identified (performed by the architect): 
From the goals available in the RARE KB, the architect selects and prioritizes a set of 
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Figure 10.5  RARE Derivation and Evaluation Process Flow
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goals to derive a particular DRA. The goals selected will be accompanied by corresponding 
heuristics (guidance on satisfying goals), metrics (means for measuring characteristics 
related to heuristics), and strategies (approaches for achieving heuristics).

2.	 Copy and Adjust Heuristics, Strategies, Metrics, and Metric Ranges under Selected Goals 
(performed jointly by RARE and the architect): Following selection and prioritization of 
goals, RARE copies the goals and corresponding heuristics, strategies, and metrics to a 
working set of “Derivation Goals” that will become part of the Derivation Plan. While 
it is not necessary to modify the heuristics, metrics, and strategies under a selected goal 
after being copied from the KB, the architect has the option to prune heuristics, adjust 
heuristic weights, prune strategies, prune metrics, adjust metric weights, and change metric 
acceptance range values. Such adjustments allow the architect to tailor the plan when 
deriving a particular DRA. For example, the architect may want to define subsystems 
(collections of DRACs) manually, and thus would want to remove strategies for creating 
subsystems. The architect may also modify acceptable metric ranges, since the tolerance 
for a metric in the context of a particular project (e.g., “Number of services in DRAC” 
must be between 2 and 8) may be more or less than the range defined in the KB.

	   In most cases, the architect (particularly a novice architect) would accept the guid-
ance offered by the KB. However, given the ability to massage heuristics, strategies, and 
metrics, a company may choose to install its own guidelines or an architect may decide 
to customize to accommodate project-specific exceptions.

3.	 Build Derivation Plan (performed by RARE): From the set of goals and associated 
heuristics, metrics, and strategies selected by the architect, RARE builds a Derivation 
Plan, a sequence of steps that determines when selected strategies can be applied during 
derivation.

4.	 Perform “Static” Strategy Evaluation (performed jointly by RARE and the architect): 
Strategies assigned to the Derivation Plan may conflict based on conflict declarations in 
each strategy definition. When two strategies conflict, RARE suggests that the strategy 
associated with the lower priority goal and/or lower weight heuristic be pruned from the 
Derivation Plan. The resulting set of pruned and nonpruned strategies is presented to the 
architect for review.

DRA Plan-Execution

The Plan-Execution phase processes the Derivation Plan created during the Plan-Generation 
phase by stepping through the sequence of strategies in the plan in an iterative fashion. During 
each iteration, relevant strategies from the Derivation Plan are applied and associated metrics are 
calculated. Following strategy application and metric calculation, the architect reviews the result-
ing DRA and evaluation results against metrics to determine if the DRA is satisfactory or requires 
further refinement. Evaluation of the DRA is based in part on the value of goal satisfaction indices 
calculated from low-level metrics. Refinement can continue as long as unexecuted strategies remain 
in the Derivation Plan. The processes in this phase (see Figure 10.5) are:

1.	 Identify Applicable Strategies for the Current Iteration (performed by RARE): For the 
current step in the Derivation Plan, determine whether any strategy preconditions are 
satisfied based on the input architecture, DRAn. Active strategies are added to a pending 
execution list. If no strategies in the current plan step are active, the subsequent step is 
examined. If no more steps are available, the derivation process ends.
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2.	 Perform “Dynamic” Strategy Evaluation (performed jointly by RARE and the architect): 
Some problems cannot be detected during “static” detection and resolution during Plan-
Generation. In particular, if the same sequence of strategies continues to be executed 
over a series of iterations, the derivation process may cease to make progress. RARE 
compares the set of pending strategies with a “strategy log” to determine whether such 
“looping” is taking place and suggests strategy pruning when appropriate. As with static 
conflict detection and resolution, the architect is given the opportunity to review the set 
of suggested strategies and finalize the strategies to be executed.

3.	 Apply Strategies and Log Changes (performed jointly by RARE and the architect): RARE 
executes the set of strategies approved by the architect. Each strategy generates a series of 
low-level architecture transformation actions (e.g., “Add Class X”). The architect reviews 
the actions to be applied and changes parameters as desired (e.g., “Add Class Y” instead 
of “Add Class X”). All strategies and actions are logged as part of rationale capture.

4.	 Calculate Metrics and Goal Satisfaction Indices (performed by RARE): RARE calculates 
the metrics associated with all selected goals and computes corresponding goal satisfac-
tion indices.

5.	 Assess Resulting DRA (performed by the architect): The architect reviews the new DRA 
version (DRAn + 1) along with associated metric values and goal satisfaction indices. The 
architect has the option of ending derivation with the current DRA version or continuing 
the derivation process.

6.	 Select DRA for the Next Iteration (performed by the architect): If the architect opts to 
continue the derivation process, a prior DRA version must be selected for further refine-
ment in the next iteration (i.e., the next DRAn). The DRA selected may be the version 
produced from the current iteration or one generated in a prior iteration. The process then 
continues with step 1 above, Identify Applicable Strategies for the Current Iteration.

The phases of the derivation process are guided by content in the RARE KB and the generated 
Derivation Plan. The following section defines the KB and describes how the architect expresses 
desired qualities using the Derivation Plan.

Guiding Derivation through the Knowledge Base and the Derivation Plan

Since different qualities can result in different architectures, the structure of the DRA derived 
reflects the qualities emphasized. The KB captures the expertise for deriving an architecture in 
light of a particular quality, while the Derivation Plan allows the architect to express the qualities 
desired for a given architecture. The discussion begins by describing the fundamental elements 
of the KB and the Derivation Plan: goals, heuristics, strategies, and metrics.

Since attributes such as maintainability, reusability, integrability, performance, comprehensi-
bility, and reliability describe overall architectural qualities, their presence is not easily verified 
by direct observation. On the other hand, low-level architecture characteristics (e.g., class size, 
depth of inheritance tree, class coupling) that are easily measured do not always have a direct 
relationship to the high-level architectural qualities. In fact, there is often a many-to-many relation-
ship between the high-level qualities and the low-level characteristics, such that no single metric 
provides conclusive evidence that a quality attribute has been satisfied.

RARE attempts to bridge this gap by correlating high-level architectural quality attributes, or 
goals, with low-level characteristics, or metrics, through heuristics and strategies (Figure 10.6). 
Each of these elements can be described as follows:
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Heuristic

A “rule of thumb” compiled from expert experience on past projects that assists the architect in 
making rational decisions when defining DRACs. For example, a well-known object-oriented 
heuristic recommends reducing coupling among classes to encourage reuse (Riel, 1996). An 
architectural goal associated with a given quality (e.g., reusability) is typically associated with 
multiple heuristics.

Strategy

An architecture transformation procedure (sequence of actions) used to apply a given heuristic. 
Following the “reduce coupling” example, a strategy might explicitly state, “move service S1 
from DRAC D1 to DRAC D2” to eliminate the need to exchange data between DRACs D1 and 
D2. More than one strategy may contribute to a heuristic, and a strategy may apply to more than 
one heuristic. A strategy becomes “active” (i.e., may be applied by the architect) when specific 
preconditions encoded in the strategy evaluate to true. These preconditions are based on particular 
metric values or conditions in the architecture. For example, the “reduce coupling” strategy may 
be triggered by an unsatisfactory value for “Degree of Coupling,” a metric used as a measure of 
DRAC-to-DRAC coupling.

Metric

A measurement of a particular architecture characteristic that provides an indication as to whether 
the architect adhered to a given heuristic. Continuing with the previous example, the DRAC in-

Figure 10.6  Relationships Between RARE Goals, Heuristics, Strategies,  
and Meta-strategies
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heritance hierarchy and/or number of data/event dependencies passed between DRACs (e.g., one 
service in one DRAC required as input data held by another DRAC) provide some evidence as to 
the degree of coupling in the DRA (Rosenberg and Hyatt, 1997). Typically, multiple metrics are 
used in combination to evaluate an architecture in the context of a heuristic and its parent goal.

Meta-strategy

Meta-strategies establish a high-level order for the derivation process and determine when a strat-
egy is applicable during derivation. The derivation process executes only one meta-strategy at a 
time, and only strategies associated with the active meta-strategy may be executed. Figure 10.7 
illustrates this relationship. Each Derivation Plan Entry in a Derivation Plan is associated with 
a meta-strategy (Meta-strategy 1–3 in Figure 10.7). The derivation process begins by executing 
Meta-strategy 1, during which only strategies S001 and S002 can be applied. Meta-strategy 1 
completes when neither S001 nor S002 becomes active (i.e., each strategy has respective precon-
ditions that must evaluate to true for the strategy to be selectable), and derivation proceeds with 
Meta-strategy 2, during which strategies S005 and S006 may be applied. The process continues 
until no more meta-strategies are available for execution. One portion of the derivation process 
that relies on the order enforced by meta-strategies is subsystem definition. Based on experiences 
deriving DRAs manually, it is recommended that functional and data allocation be completed 
before defining subsystems (Barber, 2004). RARE enforces this order through meta-strategies that 
ensure allocation strategies are executed prior to subsystem definition strategies.

Table 10.2 illustrates a sample set of goals, heuristics, and strategies represented in the RARE 
KB. The quality goals depicted have been prioritized based on an architect’s understanding of the 
needs of a particular architecture: Priority 1: “Reusability,” Priority 2: “Performance,” Priority 
3: “Comprehensibility,” and Priority 4: “Maintainability.” Examining the “Reusability” goal 
more closely, four contributing heuristics have been defined, each associated with corresponding 
strategies. Metrics applicable to the “Reduce class coupling . . .” heuristic may include familiar 
object-oriented metrics such as “Coupling Between Objects” and “Degree of Cohesion” (Chidam-
ber and Kemerer, 1991; Rosenburg and Hyatt, 1997). Since strategies and metrics may apply to 
more than one heuristic under more than one goal, the “Redistribute services . . .” strategy is an 

Figure 10.7  Using Meta-strategies to Enforce a High-level Order for Derivation
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appropriate technique for both reducing coupling under the “Reduce class coupling . . .” heuristic 
and reducing message passing under the “Reduce I/O performance bottlenecks . . .” heuristic. 
Strategies may be triggered based on the stage of the DRA during the derivation process. For 
example, “Collect classes into subsystems” may be executed after DRACs have been defined and 
functionality allocated. Strategies are also triggered by certain structural arrangements detected in 
the DRA, based on the value of related metrics. For example, “Redistribute services . . .” under 
the “Reduce class coupling . . .” heuristic could be triggered, in part, by an unsatisfactory value 
for metric “Coupling Between Objects.”

To express the intentions for a particular architecture being derived, the architect selects and 
prioritizes goals from the RARE KB prior to initiation of the derivation process (step 1 in the Plan-
Generation phase Figure 10.5). To enable customization, the architect is provided with a working 
copy of the goals selected and may modify any portion of the associated heuristics, metrics, or 
strategies. Modifications may include (step 2 in the Plan-Generation phase Figure 10.5):

•	 pruning heuristics,
•	 adjusting heuristic weights,
•	 pruning metrics,
•	 adjusting metric weights,
•	 adjusting acceptable ranges for metric values, and
•	 pruning strategies.

Managing Strategy Conflicts and Identifying Potential Strategy Problems  
During Derivation

Given that there are often inherent conflicts leading to tradeoffs between high-level architectural 
quality attributes, conflicts will naturally arise between suggested architectural transformations 
during the derivation process. While it is not uncommon for multiple strategies to be suggested 
during a particular stage of derivation (i.e., during a Derivation Plan Entry), a conflict arises when 
the projected effects of different strategies will likely drive the derivation process into opposing 
directions or stagnate the derivation progress altogether. For example, a strategy associated with 
one goal may suggest combining services into a single class, while another strategy may become 
active that suggests further dividing the existing classes into smaller classes.

During Plan-Generation, RARE detects conflicts based on explicit strategy-to-strategy conflict 
declarations in strategy definitions. Regardless of the rationale for selecting a particular strategy 
for a given heuristic, the strategy itself describes a deterministic transformation of the DRA’s 
structure and content (e.g., combining classes, splitting classes, allocating functionality, allocat-
ing data); therefore, conflicts can be explicitly encoded at the strategy level because it is readily 
apparent that two strategy transformations will likely interfere with each other (e.g., combining 
DRACs vs. splitting DRACs). Nonetheless, due to the relationship between strategies and their 
associated heuristics and goals, such strategy conflicts also suggest conflicts between respective 
goals and heuristics. Correspondingly, RARE attempts to resolve these conflicts during “static 
strategy evaluation” by suggesting to the architect that selected strategies be pruned based on their 
associated goal priorities and heuristic weights.

After RARE generates a Derivation Plan based on the goal priorities and heuristic weights set 
by the architect, it is highly likely that conflicts will exist between strategies based on the conflict 
declarations in each strategy. RARE resolves strategy conflicts by suggesting that certain strategies 
be pruned, retaining only strategies with higher priorities (i.e., where strategy priority is a function 
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of goal priority and heuristic weight). At the termination of Plan-Generation, the Derivation Plan 
is presented to the architect for review prior to Plan-Execution.

Figure 10.8 shows an example of this process. The architect selects three goals from the KB, 
prioritized as Goal1, Goal2, and Goal3. RARE builds an initial derivation plan from the heuris-
tics and strategies under the selected goals, taking into account the goal priorities and associated 
heuristic weights to calculate strategy priorities. The resulting plan in Figure 10.8 is composed 
of three meta-strategies with respective prioritized strategies. If the strategy definitions in the KB 
indicate that Strategy005 conflicts with Strategy006, RARE suggests that Strategy006 be pruned, 
since Strategy005 has a higher priority in the derivation plan. The revised plan is presented to the 
architect for final review.

The following section discusses the RARE approach for DRA evaluation with respect to se-
lected quality goals.

Formally Evaluating the DRA with Respect to Quality Goals

In RARE, metrics defined under heuristics have two functions: (1) to evaluate the current state 
of the architecture with respect to achieving respective goals and heuristics (i.e., “how good is 
the DRA?” and “is DRA derivation complete?”) and (2) to provide direction as to how deriva-
tion should proceed to more fully satisfy quality goals (i.e., “what transformations are suggested 
to improve the DRA?”). To support these decisions, the RARE tool must be able to determine 
whether a metric value is acceptable, and if not acceptable, in which direction it deviates and how 
severe the deviation is. Since it is highly unlikely that a single, desired value can be achieved for 
every metric under consideration, defining an “acceptable range” and a set of “deviation ranges” 
is more practical (e.g., “highly deviated,” “slightly deviated,” and “acceptable” ranges). Further-
more, while a metric can apply to more than one heuristic, what may be considered an acceptable 
value under one heuristic may not be acceptable under another. Thus, when evaluating the current 
state of the architecture with respect to quality goals, it is the degree of deviation, rather than the 
metric value itself, that contributes to overall goal evaluation. In addition, some metrics are better 

Figure 10.8  “Static” Conflict Resolution During Plan Generation
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indicators than others regarding how well a quality goal has been achieved. To reflect this, a metric 
weighting can be assigned that indicates how well the metric is able to predict a given goal. For 
example, metrics such as “coupling between objects” and “degree of cohesion” are often suggested 
as independence indicators linked to reusability (Lorenz and Kidd, 1994; Morris, 1989). Assuming 
that reducing coupling is considered to be a strongly recommended heuristic to improve chances 
for reusability, these metrics would be assigned a higher weight. Weights are relative among all 
metrics under a heuristic, such that a metric value’s contribution is determined by the proportion 
of its weight to the sum of all weights under the heuristic (Figure 10.9).

In addition to providing a foundation for quantitative evaluation of the reference architecture 
with respect to quality goals, metrics also help guide the derivation process. Through assigned 
deviation ranges, RARE becomes aware not only that a metric value is not within an acceptable 
range but also how severely it is askew from that range. To refine the architecture accordingly, 
specific strategies become activated from the Derivation Plan based on the metric and the metric 
deviation value, leading to corresponding changes to the DRA content and structure (only strate-
gies belonging to the Derivation Plan are considered for execution since only those strategies are 
associated with selected quality goals). For example, to significantly reduce the average class 
coupling in the architecture, one strategy may suggest combining classes, thereby affecting not 
only architecture coupling, but other factors as well, such as the total number of classes in the 
architecture. A more subtle approach may suggest rearranging services among the existing classes. 
The former strategy may be selected when a particular coupling-related metric is two deviations 
from being acceptable, while the latter strategy may be suggested with only one deviation. In 
summary, one strategy is selected over another based on the impact it has on metric values and 
thereby associated heuristics and goals.

The evaluation process (step 4 of the Plan-Execution phase) is represented by the formula 
depicted in Figure 10.10, where σg represents the resulting goal satisfaction index for goal gi 

Figure 10.9  Calculating Normalized Metric Weight Under a Heuristic
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selected by the architect.2 The goal satisfaction index is a value between 0 and 10 that is computed 
via a weighted average of heuristic “performance” values, calculated using each heuristic weight 
hij.w and the corresponding weighted average of metric performance values under the heuristic. 
The weighted average metric performance values are computed using metric weights mijk.w and a 
performance value for the respective metric, performance(mijk). A goal satisfaction index value of 
0 symbolizes that no metrics associated with the goal are within an acceptable range. A satisfaction 
value of 10 indicates that the values for all related metrics fell within an acceptable range. The 
metric performance value calculation is presented in Figure 10.11 and discussed below.

Each metric mijk under a heuristic hij yields a normalized performance value, performance(mijk), 
of 0.0, 2.5, 5.0, or 10.0 (Figure 10.11). These values correspond to the qualitative notions of 
“acceptable,” “near acceptable,” “somewhat acceptable,” and “unacceptable.” The “acceptable,” 
“near acceptable,” and “unacceptable” assessments were chosen based on the “safe,” “flag,” and 
“alarm” ranges suggested in Henderson-Sellers (1996). Dividing the range 0 to 10 among these 
assessments resulted in assignments of 10.0, 5.0, and 0.0, respectively. However, during experi-
mentation it was determined that the cut-off between “near acceptable” (5.0) and “unacceptable” 
(0.0) was too sharp, justifying an interim value of 2.5. The effectiveness of these ranges will be 
explored by future work.

A metric performance value is based on where the metric value falls with respect to the ac-
ceptable value ranges defined for the metric under the heuristic (ranges defined by mijk.ld2, mijk.
ld1, mijk.ld0, mijk.rd0, mijk.rd1, and mijk.rd2). Since this comparison requires a single scalar value, 
metrics computed against DRA elements other than the DRA itself must be aggregated into a single 
value, aijk, and the aggregation method is defined by mijk.sumRule as “minimum,” “maximum,” 
or “average.” For example, if “DRAC Coupling” is calculated for every DRAC in the DRA, a set 
of values (Vijk) is produced. After applying the sumRule associated with “DRAC Coupling” to the 
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set Vijk, the resulting value is compared to the respective acceptable ranges to yield a performance 
value of 0, 2.5, 5.0, or 10.0. In summary, a metric contributes to the evaluation of the architecture 
with respect to a particular goal based on (1) the metric’s current value; (2) the rule for aggregat-
ing the metric to the DRA level if the metric is calculated based on characteristics of DRACs, 
subsystems, services, or attributes (e.g., “Coupling Between Objects” is calculated for each class 
in the DRA and the average, maximum, or minimum is used across all classes); (3) the acceptable 
ranges defined by the architect; and (4) the weight of that metric.

Ranges for well-known metrics in the RARE knowledge base were initialized based on sug-
gestions from the literature (Lorenz and Kidd, 1994; Rosenburg and Hyatt, 1997). Other metrics 
are unique to the RARE process, and initial values were determined from experiences applying 
this process manually (Barber, 2004). These values can be adjusted by the architect in the KB and 
in the Derivation Plan. Modifying a Derivation Plan affects only the respective architecture be-
ing derived, while adjusting KB values will be reflected in each Derivation Plan created from the 
KB. As RARE has been applied to various example domains (Barber and Graser, 2001; DARPA, 
2000), empirical observations have resulted in fine-tuning adjustments to the deviation ranges. In 
particular, initial acceptable ranges may have proved too narrow, such that achieving such a range 
was unrealistic. For example, assume an acceptable “Degree of Coupling” is defined to be less 
than 5. Thus, if the architecture exhibited a “Degree of Coupling” greater than 5, RARE strategies 
would be activated to refine the architecture. However, by achieving a “Degree of Coupling” less 

Figure 10.11  Metric Performance Calculation
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than 5, it may significantly alter the value of another metric, such as “DRAC Size,” that it is no 
longer in an acceptable range. Thus, such tight constraints may mandate continued refinement 
without ever being able to achieve some equilibrium state for the architecture.

RELATED WORK

This section highlights related work in software architecture evaluation methods and object-oriented 
analysis and design as related to software architecture derivation and evaluation.

Software Architecture Evaluation

Approaches for software architecture evaluation cover a broad spectrum. On the one hand, evalua-
tion approaches can be classified based on the qualities they emphasize—from methods that focus 
on particular qualities to broad-brush methods that provide a general evaluation framework. On 
the other hand, approaches can be categorized based on the evaluation technique employed, from 
static methods such as scenario analysis or metrics-based assessment to dynamic methods such 
as simulation. While dynamic methods often provide an accurate measure of system performance 
and other runtime qualities, such analysis is not relevant to the RARE DRA derivation and evalu-
ation process and will not be addressed in detail. RARE evaluation focuses on the measuring 
characteristics of the architectural structure that results from defining DRACs and allocating 
DM functionality and data to those DRACs. Thus, static approaches are more applicable to the 
RARE process.

Much of the software architecture research has progressed as a result of individual communities 
focusing on specific software system quality issues such as maintainability (Bengtsson and Bosch, 
1999; Briand, Morasca, and Basili, 1993), comprehensibility (Briand, Morasca, and Basili, 1993), 
reliability (Abd-Allah, 1997; Wang, Wu, and Chen, 1999), performance (Abd-Allah, 1997), inte-
grability (Abowd et al., 1993), reusability (Zhao, 2000), and flexibility (Lassing, Rijsenbrij, and 
Van Vliet, 1999). RARE DRA derivation is concerned with structure, primarily the identification 
of classes and the allocation of data and functionality. Consequently, these specific evaluation 
methods must be applicable during the allocation activity to be relevant to RARE DRA evalua-
tion. For example, the recommendation by Briand, Morasca, and Basili (1993) for low average 
coupling and high average cohesion to encourage maintainability and comprehensibility can be 
directly applied to DRA data and service allocation—in fact, coupling/cohesion can be consid-
ered the strongest influence in DRA derivation. However, the reliability approaches suggested by 
Abd-Allah (1997) and Wang, Wu, and Chen (1999) cannot be applied in whole since they rely 
heavily on the semantics of architectural styles, some of which imply implementation properties 
not addressed in the systems engineering process activities SEPA DRA.

While it is important for research efforts to focus on methods for evaluating individual quali-
ties, real-world software systems require a balance of different software qualities (Bengtsson and 
Bosch, 1999; Bosch and Molin, 1999). Two approaches have been proposed for static evaluation 
of architectures that are not specific to a particular quality: scenario-based methods and metrics-
based methods.

The most prevalent overall architecture evaluation approaches are rooted in scenario-based 
methods such as the Software Architecture Analysis Method (SAAM) (Kazman et al., 1994) and 
the Architectural Tradeoff Analysis Method (ATAM) (Kazman et al., 1998; Lougee, 2005). The 
success of scenario-based approaches has led to the development of a number of related evalua-
tion methods (Asundi, Kazman, and Klein, 2001; Bengtsson, 2002; Dobrica and Niemela, 2002; 
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Tekinerdogan, 2004) as well as supporting tools (Benarif et al., 2004; Kazman, 1996). As evident 
by the name, ATAM considers multiple quality attributes and the tradeoffs between those attributes. 
The assumption is that attribute-specific analyses are interdependent, since attributes connect to 
other attributes through specific architectural elements (e.g., a property of a component), leading 
to tradeoffs (Kazman et al., 1998). RARE recognizes such inherent conflicts among quality goals 
(manifested through a given DRA structure, which promotes some attributes while inhibiting oth-
ers), and the RARE approach allows the architect to establish goal priorities, so RARE can make 
sensible tradeoffs when conflicts arise.

Other evaluation methods that are not scenario-based have also been applied to software ar-
chitectures (Dobrica and Niemela, 2002). Among those relevant to DRA evaluation in RARE are 
the use of static metrics to aid the evaluation of quality attributes (Kalyanasundaram et al., 1998); 
a method for architectural complexity evaluation described in Alhazbi (2004); and metrics for 
evaluating product-line architectures (the DRA was partly inspired by the notion of product-line 
architectures) discussed in (van der Hoek, Dincel, and Medvidovic, 2003). In Kalyanasundaram 
and colleagues (1998), the authors propose the Concept Selection Method to assess the effects of 
individual metrics on different software qualities, attempting to establish a relationship between 
objective metrics and subjective quality attributes. The RARE DRA derivation process improves 
upon the Concept Selection Method by establishing a stronger correlation between high-level 
goals and low-level metrics, managing the many-to-many relationships through heuristics and 
strategies. A number of the static metrics referenced in Kalyanasundaram and colleagues (1998) 
contributed to the metrics suite used in DRA derivation, although many do not apply, since they 
focus on implementation-level concerns.

Object-Oriented Analysis and Design and Software Architectures

The software development community has migrated away from traditional functional method-
ologies toward object-oriented analysis/object-oriented design (OOA/OOD) methodologies due 
to what many researchers and practitioners claim to be the clear advantages of OO architectures 
(Calio, Antiero, and Bux, 2000; Eckert, 1994; Graham, 1995; Henderson-Sellers and Edwards, 
1994; Meyer, 1997; Richter, 1999; Riel, 1996). Because these benefits align so closely with the 
quality attributes typically targeted by software architectures (e.g., reusability, maintainability, 
performance, reliability), object-orientation is often selected as an appropriate architectural style 
for structuring an architecture to yield desired qualities.

A significant activity in all OOA/OOD methodologies involves identifying class abstractions 
and assigning domain data and functionality to those classes. This activity sets the foundation for 
the structure upon which resulting systems will be built (Meyer, 1997) and is also foundational for 
DRA derivation. Nonetheless, based on experiments comparing the conceptualizations offered by 
different people given the same problem, Stepp and Michalski (1986) conclude there is no “right” 
answer. The position taken by the research described in this chapter is analogous. The objective of 
this research is to evolve from an ad hoc DRA derivation approach toward a more formal process 
by leveraging advice (heuristics) from experienced architects in a rational manner that aligns with 
quality goals (intentions) prioritized by the architect. To provide a foundation for these heuristics, 
the research described in this chapter must draw upon the recommendations of popular OOA/
OOD methodologies (Booch, Rumbaugh, and Jacobson, 1999; Coad and Yourdon, 1991; Graham, 
1995; Kruchten, 2000; Rubin and Goldberg, 1992; Shlaer and Mellor, 1992; Wirfs-Brock et al., 
1990) as well as experts in the field (Richter, 1999; Riel, 1996; Meyer, 1997).

Without the ability to objectively evaluate an object-oriented design in light of given qualities, 
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the potential for object-oriented approaches to achieve quality goals can be easily questioned 
(Miller, Hsia, and Kung, 1999). Object-oriented researchers have produced a number of metrics 
suites designed expressly for object-oriented analysis and design (Brito e Abreu and Melo, 1996; 
Chidamber and Kemerer, 1991; Lorenz and Kidd, 1994; Moser et al., 1997), and complementary 
research efforts have attempted to associate such measures with higher level quality concerns, 
such as reusability, testability, and comprehensibility (Rosenburg and Hyatt, 1997). Since such 
metrics were designed primarily to measure characteristics of object-oriented programs and class 
models, their definitions were modified slightly to apply to the SEPA DRA. Nonetheless, such 
modification is beneficial, since DRA derivation and evaluation is concerned with many of the 
same structural issues as object-oriented design.

ASSESSING THE VALUE OF RARE AND THE DRA IN THE CONTEXT 
OF A STANDARD SOFTWARE ENGINEERING PROCESS

The research that produced RARE and the DRA was motivated by the need for an artifact that 
could serve as a high-level blueprint in large, complex domains where multiple deployment sites 
were anticipated over many years. The functionality and data required at each site was expressible 
by all or part of the domain requirements modeled in the DRA, while the specific technologies 
used to implement that functionality differed considerably across sites and over time (Barber 
and Graser, 2001; DARPA, 2000; Graser et al., 2002). The promise of such extensive domain 
requirements reuse justified the upfront effort to gather content to populate the architecture and 
emphasized the importance of RARE’s methodical derivation and evaluation process. Similarly, 
the software engineering process adopted for these projects was explicitly tailored to incorporate 
DRA derivation activities.

In general, the ultimate usefulness of the DRA representation and the RARE process for a 
typical software development organization depends on the ability to integrate them into the 
software architecting activities associated with whatever software engineering methodology the 
organization has adopted. A traditional software development methodology defines phases such 
as problem identification, feasibility analysis, requirements gathering and representation, system 
design, implementation, and deployment (Schach, 2005). Software architecting in the develop-
ment cycle is described by the derivation decision process followed and the chosen representa-
tion. Given that software architectures can be represented at many different levels of abstraction, 
software architecting decisions can occur in any development phase. In some organizations, one 
person is assigned the role of software architect and makes decisions with input and recommenda-
tions from others. The designated architect may also be guided by an architecture review team, 
where reviews focus on evaluating the architecture with respect to quality attributes expressed by 
stakeholders by analyzing costs, benefits, and tradeoffs among options (as per tradeoff analysis 
in ATAM [Kazman et al., 1998] or RARE). In terms of representation, software engineers may 
leverage standard notations such as the Unified Modeling Language (UML) (Richter, 1999), create 
semiformal box-and-line diagrams (e.g., with Visio templates), or simply describe the architecture 
informally in text.

In assessing the strengths and limitations of RARE in comparison with other software archi-
tecture representation and derivation approaches, the fundamental considerations are whether the 
RARE process and the DRA representation can fit into an organization’s existing development 
culture and whether the output from RARE analysis will contribute to the overall decision process. 
Selected aspects that characterize an organization’s development process and culture are discussed 
below. These aspects can be used as evaluation points to help a project manager determine whether 
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RARE and the DRA can benefit the development process. Aspects are posed as questions and 
grouped into process-related and representation-related concerns.

Process-Related Concerns

Does the organization plan strategically over multiple projects? Is reuse important 
over the long term, or are development efforts typically “one-time” investments?

The primary value of RARE and a high-level domain reference architecture is to establish a vi-
sion for the topology of multiple deployments over time, regardless of the technology that will 
be selected to implement those deployments. The DRA captures domain requirements, and these 
requirements are reused as multiple systems are produced, thereby amortizing the cost of the 
analysis effort over multiple projects, systems, and deployments. The DRA also provides value 
independent of any particular system being built, in that it captures domain knowledge; the DRA 
can thereby act as a knowledge transfer medium to educate new developers and other stakehold-
ers. However, if each project is treated as a silo and analysis and design artifacts are typically not 
reused, it may be difficult to justify deriving a DRA, given the upfront investment required.

One software development approach that encourages leveraging modeling efforts over multiple 
projects is the concept of Model-Driven Architecture (MDA). MDA defines three modeling levels: 
platform-independent model, platform-definition model, and platform-specific model (Frankel and 
Guttman, 2002). A platform-independent model is a description of a software or business system 
that is independent of the specific technological platform used to implement it; the model may be 
described in a language such as UML and can be used as a basis for transformation into a family of 
platform-specific models. The DRA representation is analogous to the MDA platform-independent 
model, where domain data and functionality are allocated into prescribed components.

RARE benefits/limitations to consider. RARE provides opportunities for long-term reuse as 
a domain model in a component-connector “blueprint” that can establish a vision for multiple 
deployments. However, considerable discipline and upfront investment are necessary to derive a 
DRA that captures a complete set of domain requirements and considers factors that are not only 
applicable to current sites but also envisioned for future sites.

Would the organization reap the value of early architectural analysis?

The DRA representation is intentionally high-level to make it suitable for early, computational 
analysis, the objective being to make decisions as early as possible in the development process. 
In general, software methodologies encourage such early modeling and analysis, motivated by the 
observation that errors identified earlier in the software development cycle (i.e., during analysis 
and design phases) are less costly to fix than after implementation commitments have been made 
(Graser et al., 2002). The DRA takes this one step further by allowing engineers to perform analysis 
in terms of architecture topology, where domain functionality is allocated to components that can 
prescribe eventual computing platforms.

RARE benefits/limitations to consider. The DRA is a high-level architecture defined by a formal 
meta-model, making it suitable for early analysis, including static structural analysis (e.g., cou-
pling) and dynamic analysis such as performance simulation. Nonetheless, as with any extensive 
domain modeling effort, the DRA requires the acquisition and understanding of functionality and 



DOMAIN-SPECIFIC & IMPLEMENTATION-INDEPENDENT SOFTWARE ARCHITECTURES     193

data as well as properties on that functionality and data. These may be challenging to acquire from 
stakeholders within allocated project time and budget or difficult to estimate.

Is the organization concerned with how an analysis, design, development, or 
deployment decision was made?

Software engineering, and modeling in particular, is an evolutionary process. RARE captures a 
history of DRA revisions as derivation proceeds and the combination of selected goals, heuristics, 
metrics, and strategies collectively represent rationale for derivation decisions. As mentioned in 
the related work section, most software architecture research has emphasized architecture repre-
sentation and evaluation techniques over a methodical derivation process.

One option for tracking the evolution of design models and other software development artifacts 
is through document-level versioning (e.g., a version control system); however, this approach alone 
does not record the decisions that resulted from each evolutionary step. In the absence of such ver-
sioning, analysts and architects may tend to incorporate new content and make structural revisions 
in a single “master” version, thereby losing all traceability for later consumers of the artifact.

RARE benefits/limitations to consider. By design, RARE logs chosen goals, heuristics, metrics, 
and strategies; derivation activity (i.e., strategies applied); and evaluation results. However, given 
that each revision can be quite granular, the RARE derivation log can be voluminous. Understand-
ing the architect’s overall intentions requires mining this log for general trends in the context of 
chosen goals.

Is it possible to map stakeholder objectives to RARE-style goals and metrics? Can 
heuristics be identified that help achieve those goals?

The RARE approach depends on being able to map stakeholder objectives to quality goals and 
to associate those goals with lower-level metrics through heuristics. The default goals, heuristics, 
metrics, and strategies provided in RARE represent a compilation from project experiences, com-
monly accepted software engineering principles, and software architecture concepts. However, 
this compilation is by no means exhaustive; furthermore, goals, heuristics, and metrics may be 
defined uniquely for a given project or influenced by organizational standards. Regardless, since 
all software systems are developed to address stakeholder needs, “evaluation” is conducted in 
some form on every project, even if the first feedback is from client acceptance testing after sys-
tem delivery and the resulting “architecture refinement” comes in the form of post-deployment 
system rework. Thus, there is always a mapping between stakeholder objectives and the system 
under development, whether implicit or explicit.

RARE benefits/limitations to consider. If selected goals, heuristics, and metrics accurately reflect 
stakeholder objectives, RARE provides quantitative insight as to how well an architecture meets 
quality objectives. However, issues in the context of identifying RARE-style goals, heuristics, 
metrics, and strategies include the following: (1) Is it possible to identify goals and metrics that 
map to stakeholder objectives that can be evaluated in a high-level DRA? (2) Is ample project 
time allotted up front for this activity? (3) Will evaluation results be used to influence subsequent 
design decisions? (4) How do the structural evaluations available in RARE relate to the various 
analyses available in other tools (e.g., UML class model analysis) as well as comments garnered 
from architecture reviews?
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Representation-Related Concerns

Is the organization’s development centered around Unified Modeling Language, data 
flow diagrams (DFDs), Integrated DEFinition models (e.g., IDEF0), or other software 
engineering notations?

As discussed previously, software engineering practitioners and researchers have offered many 
different definitions for software architecture. Common among all definitions is the notion that a 
software architecture is a model that either describes an existing system or prescribes a system to 
be built. Beyond that common ground, definitions vary considerably with regard to the specific 
elements that constitute a software architecture. While the RARE DRA is composed of compo-
nents and connectors, where components represent collections of domain functionality and data 
and connectors result from the input/output dependencies between those components, others have 
suggested that the collection of UML models (class, state chart, use case, etc.) used to describe a 
system under development can be construed as an architecture (Kruchten, 2000).

RARE benefits/limitations to consider. For organizations that rely solely on UML models, the 
RARE DRA representation is a departure from the notations/representations they use in early 
analysis. In particular, these organizations may not typically consider allocation to components at 
an early stage. However, both representations capture domain functionality and data. Therefore, 
the RARE DRA can coexist with UML models. Furthermore, the DRA complements those models 
by enabling RARE-style structural evaluation.

Is the organization’s development methodology centered around data modeling  
(e.g., entity-relationship diagrams)?

Some organizations focus their analysis effort on developing a project-level or enterprise-level 
data model with minimal emphasis on functional specifications. In fact, an extensive effort to 
specify functionality may not be cost effective if an organization develops and maintains systems 
that focus on information storage, retrieval, and display with minimal data transformation or 
workflow management.

RARE benefits/limitations to consider. Considerations for an organization that emphasizes data 
modeling are similar to those for a UML-centric organization. The DRA can coexist with a data 
model and complements the data model by allocating data requirements to responsible components. 
Each representation provides a different view on the data: data concepts and their relationships 
are expressed in a data model, while component allocation is conveyed by the DRA.

Does the organization emphasize the use of formal requirements specifications?

Formal specification languages and their associated analyzers (e.g., Alloy and its accompany-
ing tool ALCOA) provide a means for specifying requirements in precise terms and conducting 
computer-based analysis to ensure correctness based on well-defined properties (Jackson, 2006). 
However, using a formal specification language requires a level of discipline and rigor when gath-
ering and representing stakeholder requirements in order to map requirements to the constructs 
of the chosen language and interpret evaluation results in terms of which requirements will and 
will not be satisfied.
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RARE benefits/limitations to consider. If an organization leverages a formal requirements 
specification, there should be minimal resistance to the DRA. However, in practical terms, the 
detail and time required for formal specification and analysis may limit its use on a given project 
or system (e.g., performing safety and liveness analysis only for critical functionality).

The DRA, while considered formal in that it uses a designated meta-model, is specified at 
a high-level, offering the opportunity to evaluate systemwide concerns at a high level. For ex-
ample, in addition to structural/topological evaluation of components and their relationships (e.g., 
coupling, cohesion, component size), service pre- and post-conditions can provide the basis for 
safety and liveness analysis, and service duration and frequency properties can provide input for 
simulation-based performance analysis. Nonetheless, as with any formal representation, such DRA 
evaluation is of minimal value without a well-populated representation that accurately reflects 
stakeholder intentions.

Every system can be described by a software architecture, so every system can benefit from 
an architectural prescription prior to development. However, in determining whether the benefits 
from adopting an explicit software architecture derivation and evaluation process such as RARE 
outweigh the costs, the following questions should be considered, which summarize the concerns 
above:

1.	 Does the explicit component-connector representation in the DRA offer analysis op-
portunities not afforded by other representations?

2.	 Does the project schedule allow time to represent requirements in an architecture and 
step through the derivation process?

3.	 Are organizational standards and skill sets in the area of modeling notations and de-
velopment methodologies a barrier for exploring other representations and analysis 
methods?

4.	 Will results from architectural evaluations be used to influence design and development 
decisions in subsequent stages of the current project as well as future projects?

A fundamental objective of RARE research was to provide a means for understanding compo-
nent responsibility and component dependency early in analysis through a high-level representa-
tion and a methodical derivation process. However, RARE provides minimal decision value if 
the architecting activity is not a sanctioned part of an organization’s development methodology. 
As with the justification for formal methods, software engineers and project managers must be 
convinced there is value in populating a computational specification for the purpose of conducting 
evaluations and using evaluation results as rationale for development decisions.

As trends in software engineering continue toward greater reliance on off-the-shelf components 
and global development teams, software managers are encouraged to find new ways to save time and 
cost by illuminating issues early and specifying requirements using unambiguous representations 
ensuring that a delivered product will meet stakeholder expectations. This is especially notable in 
distributed development efforts, where developers must understand the scope/boundaries of the 
components they have been assigned, the functionality allocated to those components, and their 
dependency on other system components.

CONCLUSION AND FUTURE WORK

This chapter presented a formal process and an accompanying tool, Reference Architecture 
Representation Environment, to derive a Domain Reference Architecture from a computational 
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Domain Model such that the resulting DRA reflects high-level quality attributes selected by the 
architect to meet stakeholder needs. Prior to this research, deriving a DRA by identifying a set 
of DRACs and allocating data and functionality to those DRACs was more akin to an art than 
a science, requiring a significant amount of guesswork and intuition on the part of the architect. 
The primary contribution of the RARE process is to formalize the DRA derivation process and to 
quantify architecture evaluation in light of quality goals. Several challenges are associated with 
architecture derivation, which partly explains why the architecture derivation process has been 
largely manual to date. Selected challenges addressed by RARE include the following:

1.	 Prioritizing qualities under consideration: During RARE’s “Plan-Generation” phase, the 
qualities selected and prioritized by the architect are represented in a “Derivation Plan” as 
“quality goals.” For each quality goal, the “Derivation Plan” contains relevant strategies 
(sequences of steps that transform the DRA) from the RARE knowledge base.

2.	 Selecting and applying heuristics for DRA derivation: The RARE KB associates one or 
more heuristics (i.e., rules of thumb) with each quality goal, and the KB is structured such 
that a goal may be associated with more than one heuristic and a heuristic may be associ-
ated with more than one goal. After selecting specific quality goals for a derivation, the 
“Plan-Generation” phase initializes the “Derivation Plan” with the respective heuristics 
and corresponding strategies. Thus the KB helps determine which heuristics to apply given 
selected quality goals and how to apply them, based on corresponding strategies.

3.	 Resolving conflicts among qualities selected: Each strategy is defined with a list of con-
flicting strategies, and because strategies are associated with heuristics and heuristics are 
related to quality goals, conflicting strategies infer conflicts among selected quality goals. 
During “Plan-Generation,” conflicting strategies in the “Derivation Plan” are identified 
and strategies associated with lower priority goals are pruned.

4.	 Evaluating the architecture with respect to quality goals: There is often a many-to-many 
relationship between low-level metrics (e.g., structural metrics such as class coupling, 
cohesion, and size) and associated high-level qualities (e.g., reusability, maintainabil-
ity), making correlation difficult. To bridge this gap, metrics are associated with quality 
goals in the RARE KB through heuristics. Heuristics represent suggested approaches 
for achieving a quality goal, and low-level metrics are useful indicators in determining 
whether a heuristic has been achieved.

Despite the potential impact that the RARE tool promises for the architecting process, this 
research is not designed to replace the architect altogether. On the contrary, the capabilities of the 
architect remain essential to the derivation process. Unique situations arise in different domains and 
under different projects that require architect input and cannot be addressed in a fully automated 
fashion. Nonetheless, the architect is burdened with numerous concerns during derivation. Particu-
larly difficult to manage are issues related to capturing decision rationale. Without justification, 
other stakeholders (e.g., other architects or project team members) may be quick to question the 
architect’s overall “vision” as well as specific decisions. By capturing the “Derivation Plan” and 
logging DRA transformation actions, RARE allows the information retained during derivation 
to speak for the architect.

It is an even greater challenge for the architect to quantitatively demonstrate that a DRA under 
derivation satisfies the quality attributes expressed by stakeholders. When deriving an architecture 
as abstract as the SEPA DRA, there is much room for interpretation, and evaluation approaches 
are often subjective. The RARE approach attempts to quantify DRA evaluation through metrics 



DOMAIN-SPECIFIC & IMPLEMENTATION-INDEPENDENT SOFTWARE ARCHITECTURES     197

measuring architectural structure that are related to quality goals through respective heuristics. 
While the metrics and heuristics under a quality goal may not represent perfect predictors of a 
system implemented from a DRA, they are nonetheless valuable to the architect by providing a 
“toolbox” of derivation approaches and methods for measuring their success.

The Domain Reference Architecture derivation process and tool produced by this research 
provide a means for quantified evaluation of architectures and an experimental apparatus by 
which architectures can be compared. Such an apparatus enables follow-on studies to validate 
goal, heuristic, strategy, and metric definitions and resulting architectures. Specific questions to 
be addressed in this analysis include (1) identifying the best metrics for predicting quality goals; 
(2) classifying preferred DRA structures, whereby the derivation process is influenced by orga-
nizational preferences; and (3) determining optimal approaches (heuristics and strategies) for 
achieving those DRA structures.

There exists no compendium of approaches for deriving the optimal architecture in all situa-
tions. Rather, improving the derivation process is a learning activity, taking into account feedback 
from archived derivation runs, downstream architecture analysis tools, actual systems designed 
from derived DRAs, and so on. As such, a worthwhile avenue for future work would be the ap-
plication of machine learning to the derivation and evaluation process. Specifically, this would 
involve incorporating machine-learning approaches into RARE to automatically fine-tune the 
RARE KB based on feedback received.

One particularly promising area under investigation by software architecture researchers is the 
synthesis of architectures with given properties. The RARE process and tool move one step closer 
to this goal by deriving an implementation-independent architecture driven by quality goals (i.e., 
high-level properties). Future research will extend the DRA derivation and refinement process to 
incorporate additional architecture representations designed to specify site-specific implementa-
tion and installation requirements. Thus, such a process will yield an architecture customized for 
a given site in terms of (1) domain services needed; (2) implementation requirements specified; 
and (3) installation constraints imposed.

ACKNOWLEDGMENTS

This research was sponsored in part by the Defense Advanced Research Project Agency (DARPA) 
Taskable Agent Software Kit (TASK) program, F30602–00–2–0588. The U.S. government is 
authorized to reproduce and distribute reprints for governmental purposes notwithstanding any 
copyright annotation thereon. The views and conclusions herein are those of the authors and 
should not be interpreted as necessarily representing the official policies or endorsements, either 
expressed or implied, of the Defense Advanced Research Project Agency.

NOTES

1. For purposes of this discussion, a “domain” can be considered a bounded set of work processes related 
by time and functional dependency.

2. The goal satisfaction index shown in Figure 10.10 represents one possible cost function for evaluating the 
DRA and guiding the derivation process. Other such functions may be considered in follow-on research.
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Chapter 11

OO-METHOD

A Conceptual Schema-Centric Development Approach

Oscar Pastor, Juan Carlos Molina, and Emilio Iborra

Abstract: During the past two decades, extensive research and industrial work (object-oriented 
methods, formal specification languages, component-based software production, etc.) have been 
oriented toward the goal of generating code from a high-level systems specification, which is 
normally represented as a conceptual schema. However, the numerous failures in the achieve-
ment of this goal have resulted in overall skepticism when any new approach offering a “press the 
button, get all the code” strategy is proposed. In spite of this reticence, the current hype around 
model-driven architecture has given new momentum to these strategies. The new methods propose 
appropriate model transformations that must cover all the steps of a sound software production 
process from an information systems engineering point of view. These must include organizational 
modeling, requirements engineering, conceptual modeling, and model-based code-generation 
techniques. The conceptual primitives must be precisely and formally defined, and the conversion 
between the different models involved and their corresponding software counterparts must be done 
in a well-defined way in order to make the full automation of the process possible through the use 
of “model compilers.” The objectives of this chapter are: to discuss which conceptual primitives 
should be present in a system specification; to analyze how to use UML to represent them; and to 
reduce the current complexity of the proposal by identifying only those diagrams and modeling 
constructs that are really necessary to create a conceptual schema. This chapter also explains in 
detail how to accomplish the transformation process between the problem space and the solution 
space. Tool support is also included to make the discussion more practical.

Keywords: Model-Driven Development, Conceptual Modeling, Model-Based Code Generation

INTRODUCTION

The history of software development can be viewed as a succession of increments in the level 
of abstraction of a path that moves the activity of “programming” toward representations in the 
problem space and away from the sphere of the solution space. Computers were first “programmed” 
by wiring, and then programmed through the use of machine code, then through the assembler 
language, then by the creation of the first compilers for procedural languages, then through object-
oriented programming and component-based development techniques. At each evolutionary step, 
the subsequent increase in the level of abstraction allowed developers to deal with problems that 
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were larger in size and complexity as well as to increase the quality, maintainability, and lifespan 
of software applications.

Today developers regard this evolution as something natural, and no one marvels at programs 
that can automate the transformation of a program written in one programming language to an 
equivalent program in a different programming language that is closer to the machine. In fact, 
every step in this evolution of software development has been characterized by raising the level of 
abstraction required to define the systems to be developed in a language that abstracts away details 
of the language in which the system would be implemented, and automating the transformation 
of programs written in the higher-level language to the lower-level language.

It is therefore only natural for the next step in this evolutionary path to assist developers in 
overcoming today’s challenges in software development. “Today’s software systems are signifi-
cantly large, complex and critical, that only through the use of automated approaches can such 
systems be developed and evolve in an economic and timely manner” (Grünbacher and Ledru, 
2004, page 12),

This goal may well be reached through the adoption of Model-Driven Development (MDD) 
techniques in general, and specifically by leveraging the Model-Driven Architecture (MDA) 
approach (MDA, 2007; Miller and Mukerji, 2003). After numerous attempts in this direction 
(Mellor and Balcer, 2002; Mellor, Clark, and Futagami, 2003; Selic, 2003; Völter et al., 2006), 
the time seems to be right for going one step forward in the process of automating the software 
production process itself. MDA is not the only proposal that is leading researchers in that direc-
tion. Proposals such as Extreme Non-programming in response to Extreme Programming (XNP; 
Morgan, 2002), or Conceptual Schema-Centric Development (CSCD; Olivé, 2005) are centered 
on the idea that in order to develop an information system, it is both necessary and sufficient to 
create its conceptual schema.

Conceptual Schema-Centric Development

Olivé promoted these concepts even further when he presented his CSCD approach as a grand 
challenge for information systems research (Olivé, 2005). Similar to the central ideas of MDA 
and XNP, CSCD is based on the assumption that the definition of the conceptual schema is all 
that is required to develop an information system.

Since the advancement of science and engineering is the primary purpose of the formulation 
and promulgation of a grand challenge, the approach proposed here focuses on the advance-
ment of IS engineering toward automation. Even if this is not at all a new, disruptive proposal  
(Teichroew and Sayani [1971] argued the importance of confronting the challenge of the automa-
tion of systems building to improve the software production process), the fact is that, forty years 
later, this goal of automated systems building has not yet been achieved. Despite the definite 
progress that has been made, the design, programming, and testing activities for most projects 
still require a substantial amount of manual effort. Not even in the two most popular develop-
ment environments (Visual Studio or Eclipse) does the automation of system building play a 
significant role. Programming continues to be the central activity and most (if not all) of the 
tool improvements are directed toward helping with the complex task of writing a program, but 
not with the task of compiling a conceptual model to avoid the repetitive, tedious, and complex 
task of programming.

Many have begun to question the usefulness of pursuing this goal. Is it perhaps a waste of 
time to continue trying? As researchers in this area, we firmly believe that it is not. Even though 
numerous problems remain to be solved (technical problems, problems related to the maturity of 
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the field, and the lack of standards), the situation has changed drastically, especially with regard 
to the absence of standards.

Recent progress on widely accepted and well-known standards such as UML (UML, 2007), 
MDA (MDA, 2007; Miller and Mukerji, 2003), XMI (XMI, 2006), MOF (MOF, 2007), J2EE 
(J2EE, 2007), .NET (Microsoft .NET, 2007), among others, are really providing an opportunity 
to reconsider the goal of automating software development processes. The MDA proposal is es-
pecially relevant in this context because it attempts to provide software processes where model 
transformation is a natural consequence of the view of using models at different levels of abstrac-
tion: the Computer-Independent Model (CIM) at the highest level; the Platform-Independent 
Model (PIM) at the subsequent level of abstraction; and moving progressively to the solution 
space through the Platform-Specific Model (PSM), and to the final code. The corresponding 
transformations between these models provide a kind of software process where all of the previ-
ous ideas fit together perfectly.

Modern, advanced industrial tools such as OptimalJ (OptimalJ, 2007) and ArcStyler (Arcstyler, 
2006) allow researchers to experiment with these approaches in practice, with results that are quite 
promising. However, these results are only partial because a true software process that is based on 
a sound model transformation process has yet to be developed. Even though partial model-driven, 
code-generation–based approaches provide code-generation capacities from conceptual models to 
a major or minor degree, programming continues to be the primary task to be accomplished. As 
yet, no true conceptual model compiler is available on the market. By a “true” conceptual model 
compiler, we mean a logical programming machine that properly transforms a conceptual schema 
into its corresponding software product counterpart by defining the required relationships between 
conceptual constructs and their associated software representations.

The OO-Method presented in this work accomplishes precisely this goal. The OO-Method and 
its supporting set of tools (OLIVANOVA Model Execution) make the metaphor of a Conceptual 
Model Compiler a reality. It introduces a fixed set of conceptual constructs and a set of rules to 
transform these conceptual patterns into their corresponding software counterparts. The imple-
mentation of all of these mappings makes the construction of a true model compiler possible.

To develop these ideas further, in this chapter we present the foundation of MDA and discuss 
its weak points. Next, we introduce the OO-Method (Pastor et al., 2001). This is a Conceptual 
Schema-Centric Development approach, which is based on the Formal Specification Language 
OASIS (Pastor, Hayes, and Bear, 1992), which sets the foundation for delivering on the promises 
of MDA. Then, we present a strategy to define and eventually automate the transformation of 
conceptual models into software systems. Before the concluding, we also introduce OLIVANOVA 
Model Execution (Pastor, Molina, and Iborra, 2004) as an implementation of the OO-Method and, 
therefore, of MDA.

MDA

MDA, which is promoted by the object management group (OMG), aims at separating the logic 
of applications from the software platform on which this logic is to be implemented. This separa-
tion mitigates the impact of evolving technologies on the development of applications because it 
enables a specification to be reified in different software platforms. This has the additional benefit 
of shifting the intellectual property of a software system from the source code of its implementa-
tion to the conceptual model of its specification.

In the process of developing applications, MDA turns models into “first-class citizens.” These 
models become the most valuable asset for developers because, by using them as input to a series 
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of transformations, developers can obtain the source code of the systems defined by these models. 
Developing an application in an MDA fashion basically involves creating a model of the application 
that is agnostic about implementation details. MDA refers to these models as Platform-Independent 
Models. A PIM can then be transformed into another model that adds details about the platform 
on which the application will be developed. These are referred to as Platform-Specific Models. 
Transformations can be chained so that the PSM obtained by applying a certain transformation 
Ti becomes the PIM for the next transformation (Ti + 1). Eventually, a PSM (or set of PSMs) will 
be transformed into text in order to obtain the final product of the (chain of) transformation(s): 
source code.

MDA proposes UML (UML, 2007) as the “standard” modeling language to define both PIMs 
and PSMs, although the OMG itself acknowledges that any modeling language can be used in MDA 
provided that it is defined in terms of the Meta-Object Facility MOF (MOF, 2007) language.

Since the inception of the MDA, many efforts have been devoted to addressing an aspect that 
seems to be critical for the success of the approach itself: how to define and implement trans-
formations between models, and from models to text. These efforts have been rewarded by the 
definition of two specifications to establish the grounds for full-fledged MDA implementations, 
namely, MOF QVT (Queries/Views/Transformations) (Heaton, 2001) and MOF Model-to-Text 
(Eakman, 2007).

Two aspects that are even more critical than the ability to define transformations have been 
traditionally neglected: modeling languages and execution models. For a modeling language to 
be used in a model-centric development approach, it must be:

•	 abstract enough so that models created with it are truly implementation-agnostic, thus al-
lowing developers to focus on the problem space and reify to multiple platforms;

•	 accurate enough so that models created with it provide a full description of the relevant 
features characterizing the system; and

•	 precise enough so that all elements in models created with it have a well-defined semantics 
with zero semantic variation points.

Any attempt to build a deterministic, repeatable process (automated or not) to transform a 
conceptual model of a system into a software application that is functionally equivalent to this 
model must be based on an execution model that states the runtime behavior of all the primitives 
in the specification language.

In this context, two very remarkable features in the OO-Method are introduced below:

1.	 A precise set of conceptual primitives is provided by the method, in accordance with its 
formal basis. Since a subset of UML diagrams is used as the corresponding basic repre-
sentation blocks, an adequate and efficient use of this well-known standard is proposed, 
which avoids the problem of overspecification that occurs when having to use the hundreds 
of modeling elements provided by the UML notation as a whole.

2.	 On the other hand, every conceptual construct introduced in the model has its corre-
sponding software counterpart when projected in the software product representation 
through a process of model transformation. In this way, every piece of information 
contained in the conceptual schema is meaningful and has a precise semantic justifica-
tion: to describe a specific part of the problem domain so that it is properly converted 
into a software representation at the solution space (depending on the particular target 
software technology).
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In the following, we present the specific aspects of this approach in more detail.

OO-METHOD

OO-Method is a software development methodology that is based on a clear separation between 
the problem space (what we want to build) and the solution space (how are we going to build it). 
The definition of a problem (the abstract description of a system, represented in the corresponding 
conceptual schema) can be enacted regardless of any particular reification (concrete implementa-
tion of a software solution). This positions OO-Method as a sound methodological foundation on 
which to build tools that embrace the MDA directive of separating the logic of software applica-
tions from their (multiple) possible implementations.

The formalism underlying OO-Method is OASIS, which is a formal and object-oriented speci-
fication language for the specification of information systems (Pastor, Hayes, and Bear, 1992). 
This formal framework provides a characterization of the conceptual elements that are needed to 
accurately specify an information system. It encompasses two main components: the conceptual 
model and the execution model.

Conceptual Model

The conceptual model comprises four complementary views: the objects model, the dynamic model, 
the functional model, and the presentation model. All of them together constitute the whole conceptual 
schema specification. These four views allow the definition of all the functional aspects of a system 
in an abstract (implementation-independent) yet accurate fashion by means of a set of conceptual 
elements (which we refer to as conceptual primitives or conceptual patterns) with a precise semantics. 
Most of these conceptual patterns have a UML-based graphical notation, which hides the complexity 
and formalism of the underlying OASIS formal specification from the developer.

Objects Model

The objects model comprises a class diagram that graphically describes the structure of the system 
in terms of its classes with their properties and structural relationships (generalization, association/
aggregation), thus providing a static view of the architecture of the system.

Classes have attributes of three kinds: constant attributes (those that get a value when the class 
is instantiated and do not change), variable attributes (those whose value can change during the 
lifetime of objects), and derived attributes (those whose value is calculated from the values of 
other attributes). In order to specify how the value of a derived attribute is calculated, a set of 
well-formed formulas called derivations can be defined.

Classes also have services, which define the signature of operations that can be invoked upon 
objects. Services, like “operations” in UML, have arguments or parameters but also fall into two 
categories: events, which are atomic execution units; and transactions, which are molecular execu-
tion units that encompass other services (either events or transactions).

Events, in turn, can be stereotyped as “new” (those whose semantics is that of creating a new 
instance of the class, assigning a value to each of its properties and relationships) and as “destroy” 
(those whose semantics is that of destroying an instance of the class and breaking relationships 
with related instances or cascade-destroy related instances, depending on the features of each 
relationship). Figure 11.1 shows an example of the graphical notation in the class diagram for a 
class with attributes and services. The semantics of events that are not stereotyped as “new” or 
“destroy” are defined in the functional model.
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The semantics of a transaction is defined via a formula that states:

•	 the set of services that comprise the transaction,
•	 the initialization of each argument of each of these services, and
•	 (optionally) Boolean conditions that must hold for each of these services to execute.

The ability to define the functionality of atomic services (events), coupled with the ability to 
compose an arbitrary number of services into another (molecular) service, is a clear contribution 
of the OO-Method and allows the functionality of services (the equivalent to UML operations) 
of classes to be fully specified.

The functionality of services can be further constrained by defining preconditions, well-formed 
Boolean formulas equivalent to precondition constraints in UML. Also, integrity constraints (class 
invariants) can be defined to prevent the occurrence of services from leaving objects of the system 
in an invalid state.

As stated above, generalization and association/aggregation relationships can be defined be-
tween classes. Generalization relationship specification deals with the inheritance specification. 
Both generalization and its inverse, specialization, can be specified. A child class can be seen as 
a role that is activated when a given event or a class condition is fulfilled and that incorporates 
the corresponding set of new properties characterizing the role. It can be left out when the speci-
fied event occurs or when a leaving condition is satisfied. In any case, signature compatibility is 
required to assure consistency between parent and child classes.

Additionally, association/aggregation relationships allow well-known binary relationships 
between classes to be declared, including cardinality, the static or dynamic aspect of the relation-
ship, potential identity dependencies, and a stronger form of aggregation if composition is present. 
Figure 11.2 depicts sample association and generalization relationships.

Vehicle

«Id» PlateNumber: String
CreationDate: Date
Make: String
Model: String
Fuel: String
Kilometers: Real
Status: String
Notes: String

«new» Create()
«destroy» Delete()
Rent()
Return()

Figure 11.1  Class Vehicle
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In addition to generalization and association/aggregation relationships, OO-Method allows for 
the definition of agent relationships. An agent relationship is a directed relationship between two 
classes (one playing the role of agent class, the other acting as server class) that defines:

•	 which attributes in the signature of the server class the agent class is allowed to query,
•	 which roles (the equivalent to association ends in UML) in the signature of the server class 

the agent class is allowed to navigate, and
•	 which services in the signature of the server class the agent class is allowed to execute.

As illustrated in Figure 11.3, the graphical notation for the agent relationship is a dashed arrow 
from the agent class to the server class stereotyped with “agent.”

This allows the modeler to specify a conceptual schema as a client-server model, where it is 
properly stated which services are provided to the system by classes, and what kind of permissions 
(agent) classes have to observe other classes’ properties or activate other classes’ services.

Figure 11.2	 Associations Between “Vehicle” and “VehicleType,” and “RetiredVehicle” 
and “Buyer”

Vehicle

«Id» PlateNumber : String
CreationDate: Date
Make: String
Model: String
Fuel: String
Kilometers: Real
Status: String
Notes: String

«new» Create()
«destroy» Delete()
Rent()
Return()

Vehicle Type

«Id» VehicleTypeId: Autonumber
Description: String

«new» CreateType()
«destroy» DeleteType()
EditDescription()

Buyer

«Id» BuyerId: Autonumber
Name: String

«new» NewBuyer()
«destroy» Delete()

Retired Vehicle

RetirementReason: String

Vehicle.Retire /

1..1

1..1

Vehicles
«dynamic»

Buyer
«static»

Vehicles
«dynamic»

Type
«static»

*

*

Note: Class “Vehicle” specializes into “Retired Vehicle” when event “retire” is executed.
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Dynamic Model

Once the static architecture of the system has been defined, we can define the dynamic aspects 
(associated to intraobject control and interobject communication). This is done through the dy-
namic model, which includes a state transition diagram per class, triggers, and a global transac-
tions specification.

There is a state transition diagram per class present in the objects model. A UML state machine 
diagram is used to specify the valid lives of objects of a class, that is, the order in which services 
of the class can occur throughout the life of its objects.

To specify class triggers and global transactions, UML communication diagrams are used. Trig-
gers represent those class services to be activated when a predefined condition holds in the source 
class. Global transactions allow global services to be defined, with global meaning that they group 
different services declared in different classes, making them constitute a single execution unit.

Functional Model

Once the system class structure has been specified and system dynamics in the form of valid lives 
of class objects and interobject communication mechanisms are properly defined, the only aspect to 
be considered is how a class service occurrence will change the local state of the involved objects. 
This is done through the functional model in which dynamic logic axioms of the form

f [s()] f´

are defined to specify events functionality, where f and f´ are well-formed formulae built over an 
alphabet of class attributes and s is the corresponding service whose functionality is being speci-
fied. The informal meaning of such formulae is that “assuming that f is true, f´ will express the 
new resulting object state after the occurrence of s.” These dynamic logic axioms are the result 
of applying a pre/post-specification technique.

Figure 11.3  Class “Client” Is Agent of Services “Rent” and “Return” of Class “Vehicle”

Vehicle

«Id» PlateNumber: String
CreationDate: Date
Make: String
Model: String
Fuel: String
Kilometers: Real
Status: String
Notes: String

«new» Create()
«destroy» Delete()
Rent()
Return()

Client

«Id» ClientId: Autonomous
CreationDate: Date
GivenName: String
FamilyName: String
Address: String
RentalCount: Nat
RentalBalance: Real
PendingBalance: Real

«new» NewClient()
«destroy» DeleteClient()
Edit()
Rent()
Return()

«agent»
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OO-Method usually refers to these dynamic logic axioms as valuations, which relate a variable 
attribute a of a class with a given event s so that upon the occurrence of s, and if f holds, a will 
take the value determined by f´.

Presentation Model

Finally, user interaction has to be considered. If we want to build a complete system description, 
the way in which users will perceive the system when interacting with it needs to be incorporated 
into the constructed system specification, which is the conceptual model. Therefore, a presentation 
model is provided to complement the three previous system views.

To specify user interaction properties, the presentation model creates an abstract user-interface 
(UI) specification built from a set of UI patterns belonging to a predefined catalogue of patterns 
provided by OO-Method. These patterns collect the different situations that have to be considered 
for UI specification purposes (for instance, selection criteria for looking for specific class instances, 
a display set to fix which attributes should be shown to give more information about a selected 
object, a set of available actions to determine which actions can be executed within the scope of 
a given class service, etc.).

These UI patterns are structured in three different levels as shown in Figure 11.4. The first level 
of the hierarchy, called Hierarchical Action Tree, defines the first level of interaction. It groups 
the set of second-level interaction units, which are:

•	 The Service Interaction Unit, which is intended to represent the IU components involved in 
the execution of a service.

•	 The Class Population Interaction Unit, which is oriented to determine how to access (subsets 
of) the population of a class, including potential filter conditions, attributes to be viewed, 
potential class services available when in a particular class instance, and so on.

•	 The Instance Interaction Unit, which is in charge of applying a similar idea but which focuses 
on how to present a selected instance of a class.

Other complex interaction units can be built by composing the three previous types to deal 
with more sophisticated kinds of user interactions (for instance, a Master-Details Interaction 
Unit).

Finally, the third level of the UI pattern hierarchy is constituted by the set of UI patterns that 
fix the lower-level rules that guide the final specific interaction to be executed. Depending on the 
interaction unit type, this includes, for example: whether a service argument is to be introduced 
and/or to be selected using a condition built on prespecified class attributes; how to group service 
arguments; which attributes will be seen; what specific set of services can be activated when ac-
cessing an instance, and so on.

When all the components of the conceptual model are specified, it is time to proceed with the 
model transformation process that will convert every conceptual primitive into its corresponding 
projection in the target software development environment where the final software product is to 
be built. To do that, an execution model must be defined.

Execution Model

Having introduced the conceptual primitives that allow the creation of a model to describe an 
information system in an abstract yet accurate and precise way, the execution semantics of each 
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of the conceptual primitives must be defined. In other words, what will the runtime behavior of 
objects of the system (instances of classes of the model that represents the system) be according 
to the conceptual primitives that have been used to define the model that represents this system?

The execution model can be seen as an abstract machine that is capable of executing any model 
created with the set of conceptual primitives we have described above. It is abstract in that it does 
not dictate how to execute models in any given platform and technology. Rather, any set of rules 
governing the conversion of a conceptual model into a functionally equivalent software representa-
tion (implementation) in a given platform and technology must be compliant with this execution 
model. The execution model per se is aimed at enforcing functional equivalence between (abstract) 
conceptual primitives and (concrete) software representations of these primitives, and it also ensures 
functional equivalence between different reifications of the same conceptual model.

Therefore, in order to easily implement and animate the specified system, we define a way in 
which users can interact with system objects. To achieve this behavior the system has to:

1.	 Identify the user (access control): log the user onto the system and provide an object system 
view to determine the set of object attributes/services that the user can query/activate.

Figure 11.4  Structure of the Presentation Model

Level 1

Hierarchical 
Action Tree

Service Interaction Unit

Class Population
Interaction Unit

Instance Interaction Unit

Master-Details
Interaction Unit

Level 2 Level 3

Master Interaction Unit

Detail Interaction Unit

Introduction

Defined Selection

Arguments Grouping

Dependency

Supplementary 
Information

Filter

Order Criterium

Display Set

Offered Actions

Navigation

LEGEND

A B

A uses B
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2.	 Allow service activation: once the user is connected and has a clear object system view, 
s/he can activate any available service in her/his worldview. Among these services, we 
will have system observations (object queries) or events or transactions served by other 
objects.

Any service activation comprises two steps: building the message and executing the service. 
In order to build the message, the user has to provide information to:

1.	 Identify the server object: the existence of this server object is an implicit (pre)condition 
to executing any service, unless we are dealing with a <<new>> event.

2.	 Provide values for service arguments.

Once the message is sent, the service execution is characterized by the occurrence of the fol-
lowing sequence of actions in the server object:

1.	 Check state transition: verify the existence of a valid transition labeled with the service 
being executed from the object’s current state to another state in the state transition dia-
gram.

2.	 Precondition satisfaction: all preconditions (if any) associated with the service must hold.
3.	 If 1 or 2 does not hold, an exception will arise and the message is ignored.
4.	 Valuations fulfillment: the induced event modifications (specified in the functional model) 

take place in the involved object state.
5.	 Checking integrity constraints in the new state: to assure that the service execution leads 

the object to a valid state, integrity constraints are verified in the final state. If any con-
straint does not hold, an exception will arise and all changes to the object are undone.

6.	 Testing trigger relationships: after a valid change of state, the set of condition-action rules 
that represent the internal system activity is verified. If any of them holds, the specified 
service will be triggered.

The previous steps guide the implementation of any program to assure the functional equiva-
lence between the object system specification collected in the conceptual model and its reification 
in a programming environment.

COMPILING OO-METHOD CONCEPTUAL MODELS

An OO-Method conceptual model represents an application to be developed. The next natural 
step after building a conceptual model and validating it is to implement the application that the 
model represents.

We will refer to the process of transforming a conceptual model into a functionally equivalent 
software application as conceptual model compilation. If the creation of conceptual models re-
sults in a rise in the level of abstraction with respect to that of the source code, in much the same 
way that source code raises the level of abstraction from that of, say, machine code, it seems only 
natural to refer to this transformation process as “compilation,” in the same way that the software 
engineering community refers to the process of transforming source code into machine code as 
compilation.

Traditional compilers transform a program written in a certain programming language (which 
abstracts away details about the hardware platform on which it will execute through the use of 
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registers, physical organization of memory, etc.) into code that executes directly on a given ma-
chine with its requirements as a hardware platform.

Analogously, a model compilation transforms a conceptual model (which abstracts away details 
about the software platform on which it will execute through the use of execution control, representa-
tion of data in memory, data access, etc.) into a program written in a certain programming language 
that will take care of the requirements of the software platform on which it will be executed.

Since the semantics of all primitives in the conceptual model is clearly defined, the compilation 
of a conceptual model can be carried out in a manual way. In other words, the specification of 
the conceptual model contains enough details about the system to be developed that a developer 
with no additional information could implement it. Moreover, using the same conceptual model 
as input, different developers would create different implementations of it, but all of them would 
be functionally equivalent.

Nevertheless, to perform these transformation processes in an efficient way, there must be a 
set of tools that automate the compilation of models: we will refer to these tools as conceptual 
model compilers or, in short, as model compilers.

Regardless of whether the compilation process is performed manually or in an automated way, 
certain requirements must be observed in order to define a set of guidelines to perform a complete 
and correct compilation of a conceptual model. Compiling a conceptual model into an application 
must be a deterministic process that can be applied in a systematic way. To obtain this process, 
OO-Method establishes:

•	 what the representation of any conceptual model in any development environment must be 
(taking into account both static and dynamic aspects); and

•	 an execution strategy that guarantees functional equivalence between a specification and an 
implementation of it.

Also, the architecture of applications to be produced by the compilation process must be de-
fined. In consequence, the way to transform elements in the conceptual model into elements in the 
application architecture and the way to transform the latter into code must be defined.

Application Execution Strategy

The first key aspect to be taken into account in order to implement a process to compile conceptual 
models is the definition of how the applications to be produced will use elements defined in the 
conceptual model to function. OO-Method proposes an abstract execution strategy (the execution 
model) that is tied to the semantics of modeling elements, but that is independent of the details 
of the software platforms on which applications will be implemented.

This strategy does not change with different compilation processes; it completes the seman-
tics of modeling elements and guarantees that the applications produced as a result of applying 
a compilation process will be functionally equivalent to the conceptual models used as input for 
this compilation process.

Application Architecture

The application architecture establishes the common structure of any application compiled from an 
OO-Method conceptual model and must be compliant with the application execution strategy in order 
to preserve the functional equivalence of the application with respect to the conceptual model.
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The set of mechanisms defined by the application execution strategy is abstract in the sense 
that it dictates only what mechanisms an application must have in place (e.g., verify that integrity 
constraints hold for an object after executing a service on it), but it does not dictate how these 
mechanisms must be implemented (e.g., a method that reads the values of the attributes of the 
object on which a service has been executed and verifies that every attribute has a valid value ac-
cording to the integrity constraints defined in the class that this object is an instance of). Therefore, 
we need to define the architecture of applications.

First of all, it is obvious that the application architecture must provide mechanisms for every 
conceptual primitive in a conceptual model: classes, attributes, relationships, derivations, precondi-
tions, integrity constraints, and so on. However, in addition to this, the application architecture must 
state how all of the mechanisms in the application execution strategy will be implemented (e.g., how 
the state of objects is made persistent, how derivations are calculated, how integrity constraints are 
enforced, etc.). Finally, the application architecture must provide mechanisms that are independent of 
the conceptual model but that are common in any application to be implemented on a given platform: 
error management, communication protocols, data access management, and so forth.

The application architecture must therefore be a reconciliation of the set of mechanisms re-
quired by the conceptual model and the execution model (application execution strategy) with 
the set of mechanisms imposed and/or required by the software platform, programming language, 
programming model, and so on, at which the application is targeted.

A clearly defined application architecture will apply the process of conceptual model compila-
tion in a systematic way on different models, thus obtaining different applications (one per model) 
that have common features and quality levels. Should there be a change in the acceptance level 
for any feature of the application, the application architecture would be revised to achieve the new 
requirements, but the conceptual model would remain unchanged. After modifying the application 
architecture, we would apply the process of conceptual model compilation to the conceptual model 
again in order to obtain a new version of the application that provides the same functionality (since 
the conceptual model used as input would be the same) according to the new requirements.

We will refer to the set of elements and properties and elements relations that comprise the ap-
plication architecture as the application model. With OO-Method defining both the set of conceptual 
primitives and its execution model, the intellectual effort in the creation of a model compiler is 
focused on defining this application execution model.

Transformation Strategy

In order to complete the definition of a conceptual model compilation process, we must define 
a transformation strategy to obtain the application model from the conceptual model and, in a 
second step, obtain the application code from the application model.

The transformation strategy comprises the definition of:

•	 Mappings, which establish relationships between elements in the conceptual model and ele-
ments in the application model.

•	 Text transformations, which state how to transform elements in the application model into 
text (code fragments).

Mappings define how to create instances of elements in the application model from instances of 
elements in the conceptual model so that the set of mappings creates an application model from a 
conceptual model. This set of mappings can be seen as a function whose domain is the conceptual 
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model and whose co-domain is the application model. Mappings can include conditions that must 
hold for the mapping to be applied (e.g., some mappings will be applied only on elements of the 
conceptual model on which a certain condition is verified). Finally, mappings can be related to 
one another to define

•	 the order in which mappings are to be applied, and
•	 a dependency hierarchy between mappings.

Text transformations define how to obtain a code fragment from an element in the application 
model and the values of its properties. A text transformation can be seen as a function whose do-
main is an element of the application model (or a subset of its properties) and whose co-domain 
is a text.

OLIVANOVA MODEL EXECUTION, AN OO-METHOD IMPLEMENTATION

In Miller and Mukerji, (2003), the authors state that “To be adopted, a submitted technology must 
include a PIM and at least one PSM; in addition, there must be an implementation or a commit-
ment to provide an implementation within a year.”

France and Rumpe (2007, page 4) state that MDD approaches have to overcome three main 
challenges to succeed: to provide high-level, precise modeling abstractions; to deal properly with 
different viewpoints when modeling systems; and to manage models (transformations, traceability, 
consistency, evolution . . .). Tool support is currently a need to put these ideas successfully in 
practice. The OO-Method, aligned with the MDA perspective, has commercial implementations 
developed by CARE Technologies (Care Technologies, 2007) that work hard in this direction 
under the brand OLIVANOVA Model Execution. It includes, among others, the OLIVANOVA 
Modeler modeling tool (CARE Modeler) and a set of model compilers branded OLIVANOVA 
Transformation Engines (CARE Model Compiler). Therefore, OLIVANOVA Model Execution 
provides a Conceptual Schema-Centric Development Approach that is supported by tools aligned 
with the MDA initiative (Molina, 2006). Of course, this is not the “only” working implementa-
tion of MDA, but it provides an adequate workbench where the ideas previously introduced can 
be checked in practice.

The main components of OLIVANOVA Model Execution are illustrated in Figure 11.5:
Starting with the set of functional requirements for an application to be developed, the analyst 

will create an OO-Method conceptual model of the desired system in OLIVANOVA Modeler. 
In MDA terms, the conceptual model would be the PIM of the system since any OO-Method 
conceptual model is truly platform-independent because its level of abstraction lets the analyst 
define all the functional aspects of the system regardless of the platform (or platforms) on which 
this system is to be implemented. Nevertheless, it is important to note that even if the conceptual 
model is platform-independent, it is detailed and precise enough to enable an automated set of 
transformations to compile it into a full application.

Therefore, this conceptual model, or PIM, is used as input to a set of OLIVANOVA Transfor-
mation Engines or Model Compilers (the choice of which depends on the target platform) which 
then operate two transformations:

1.	 First, the conceptual model is transformed into an application model that addresses the 
specific details of the target platform on which the modeled system is to be implemented. 
In the MDA jargon, this would correspond to a PIM to PSM transformation.
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2.	 Second, the application model is transformed into text in the form of, for instance, source 
code for the GUI, source code for the application logic, or scripts for database creation 
(depending on the model compiler). Again, using MDA terminology, this would be a 
PSM to Text transformation.

OLIVANOVA Modeler

OLIVANOVA Modeler is a tool for the edition and validation of OO-Method conceptual models. 
Its major features include:

•	 Support for the four conceptual model views: objects, dynamic, functional, and 
presentation

•	 Formula editors
•	 Automatic validation of models
•	 Import of models from:
	 -	 Total or partial models created with the tool.
	 -	 Total or partial models from third party tools (in XMI format [XMI, 2006])
	 -	 Database schemas
•	 Support for cooperative modeling
•	 Automatic generation of model documentation
•	 Automatic generation of model functional size metrics

Figure 11.5  OLIVANOVA at a Glance
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In MDA terms, we could say that OLIVANOVA Modeler is a tool for the edition and validation 
of PIMs. The tool implements a model repository that can be exported to an XML (XML, 2006) 
format for interchange with other tools.

As discussed above, an OO-Method conceptual model comprises four model views: objects, 
dynamic, functional, and presentation. Thus, the tasks of the analyst typically involve the defini-
tion of the system from these four complementary viewpoints.

Defining the Objects Model View

The first task an analyst takes care of when creating an OO-Method conceptual model is the 
definition of the objects model view. This view captures the static aspects of the system in terms 
of which entities (classes) comprise the system (e.g., Vehicle, Client, Invoice, etc.), which are the 
relevant properties of each entity (e.g., InvoiceNumber, InvoiceDate, InvoiceAmount, InvoicePay-
mentDate, IsPaid, etc.) and the relevant relations between entities (e.g., each Invoice corresponds 
to one and only one Client, which can have zero or many invoices).

Integrity constraints can be defined for classes to state the conditions that must be fulfilled 
by instances of a class at any time in order to enforce the consistency of the data managed by 
the system (e.g., “InvoiceAmount > 0” states that the amount of an invoice must always be 
greater than zero and thus prevents the existence of an invoice whose amount is, for instance, 
negative).

Once the structure of the data to be managed by the system has been defined, the analyst 
typically moves on to define the services (the equivalent to UML operations) that will oper-
ate on that data. For example, in the Invoice class, the analyst will define services such as 
“newInvoice” to create an invoice, with arguments “invoiceNo” (invoice number), “client” 
(client to be invoiced), “invoiceDate” and “invoiceAmount”; or a service such as “pay” to 
mark an invoice as paid, with arguments “invoice” (the current invoice to be marked as paid) 
and “paymentDate.”

If the execution of a service requires some conditions to be verified, these preconditions can be 
associated to the given service in this objects model view. For instance, if the payment date of an 
invoice must be later than its creation date, the analyst would associate the following precondition 
to the “pay” service: “invoice.InvoiceDate < paymentDate.”

The complete specification of the objects model view is usually achieved through a series of 
iterations before moving on to the definition of the other three views or after a series of iterations 
covering the definition of this and the other three views.

Defining the Dynamic Model View

Once the analyst has defined (or after editing or deleting the definition of ) services in the objects 
model view, s/he can proceed to define when the occurrence of these services can take place in 
the dynamic model view. This is done through the use of State Transition Diagrams that represent 
what states are reached by an object upon the execution of a service on it, depending on which 
state that object is in.

For instance, when an invoice is created upon the execution of its “newInvoice” service, that 
invoice reaches the “Unpaid” state. The execution of its “pay” service will change the state of that 
invoice from the “Unpaid” to the “Paid” state. An invoice can be destroyed either when it is in 
the “Unpaid” or in the “Paid” state, but it cannot be paid again if it is already in the “Paid” state. 
This example is illustrated in the (partial) state transition diagram in Figure 11.6.
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The analyst can also define the interobject communication aspects of the system in this dynamic 
model view, which in this case is supported by the graphical notation of UML communication 
diagrams.

For instance, in order to support the requirement that the creation of an invoice must always 
result in sending a notification to the invoiced client, the analyst decides to create a global service 
name “InvoiceClient” to encompass the execution of the “newInvoice” service of class “Invoice” 
with the execution of the “notify” service of class “Client” in a single execution unit. Figure 11.7 
illustrates the communication diagram for the “InvoiceClient” global service, where these two 
atomic services are used to specify the resultant global service.

Defining the Functional Model View

As in the case of the dynamic model view, once a service has been added or edited for a class, the 
analyst can move on to define how the execution of that service will change the state of the object 
(in terms of the values of its attributes) on which it is executed. The definition of the functional 
model view does not have to take place after the definition of the dynamic model view, the only 
real prerequisite is that the related services must have been defined or edited previously in the 
objects model view.

As discussed above, services can be events or transactions, that is, atomic or molecular execu-
tion units; and the analyst can define how the occurrence of events changes the value of attributes 
of a class in the functional model view. The dynamic logic axioms used for that purpose do not 
have a graphical notation, but rather a textual, object constraint language–like one. Each of these 
dynamic logic axioms, called valuations, relates an attribute and an event of a class in order to 
state the value that this attribute will have when the event occurs.

Figure 11.6  Partial State Transition Diagram for Class Invoice

Unpaid

Paid

pay

newInvoice deleteInvoice

deleteInvoice

editInvoiceData
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For instance, upon the occurrence of the “pay” event on an invoice, the analyst determines 
that its “InvoicePaymentDate” attribute will have the value of the “paymentDate” argument of 
the “pay” event, and that the “IsPaid” attribute of the invoice will be set to true. This is illustrated 
in Table 11.1.

Defining the Presentation Model View

The aspects of user interaction with the system can be defined by the analyst as soon as its static 
aspects (classes, attributes, relationships) and the services that have been defined are in place. As 
discussed in a previous section, the catalogue of patterns to define the abstract UI are structured 
in three levels. This does not dictate, however, that the analyst must define the presentation model 
view in this fashion: either a top-down (going from the hierarchical action tree to the elementary 
patterns in the third level) or a bottom-up approach (even a combination of the two) can be used 
by the analyst.

For instance, when defining the interaction scenario to access (and interact with) the invoices 
in the system (using a population interaction unit), the analyst may well follow any of these 
approaches:

•	 First, define the population interaction unit for the “Invoice” class without defining its 
constituent third-level patterns. Then define each of its constituent patterns, for instance: a 
display set (to define which attributes of the invoice will be presented to the user), an order 
criterion (to specify in which order the invoices will be presented to the user), and a set of 
offered actions (i.e., which services will be available to the user for execution on the pre-
sented invoices). Then create a hierarchical action tree and select the population interaction 
unit previously created as one of its constituent elements.

•	 First, define the elementary third-level patterns to compose the population interaction unit 
(i.e., the display set, the order criterion, and the set of offered actions). Then create the popu-
lation interaction unit and select the previously created elementary patterns as its constituent 
elements. Then create a hierarchical action tree and select the population interaction unit that 
was previously created as one of its constituent elements.

•	 First, define the hierarchical action tree, then the population interaction unit, and then the 
constituent elements of the latter.

As in the case of the dynamic model view and the functional model view, the order in which 
this presentation model view appears in this document does not mean that it cannot be defined 
until the other two views have been completely defined. However, the elements of the objects 

Figure 11.7  Communication Diagram for the InvoiceClient Global Service*

:Invoice :Client
2: notify1: newInvoice

*Where two services of the class Invoice (newInvoice and notify) are encapsulated in a global execution 
unit (the global service called InvoiceClient).
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model view that are referenced from this view (classes, attributes, relationships, services) must 
already have been defined.

OLIVANOVA Transformation Engines

The OLIVANOVA Transformation Engines are implementations of different conceptual model 
compilation processes. Each transformation engine implements the following: a repository of the 
conceptual model, a repository of the application model, a set of mappings between the elements 
in the repository of the conceptual model and the elements in the repository of the application 
model, and the set of text transformations associated with each element in the repository of the 
application model.

The conceptual model repository is a common component that is common to all transforma-
tion engines. It is capable of loading an XML interchange file containing a model created with 
OLIVANOVA Modeler.

Mappings access the conceptual model repository and populate the application model reposi-
tory. This application model repository is specific to each transformation engine and contains the 
elements that correspond to mechanisms that execute elements in the conceptual model as defined 
in the execution model, as well as those mechanisms pertinent to the platform, technology, and 
programming language at which the transformation engine is targeted.

Text transformations operate on the application model repository to generate the code fragments 
corresponding to each element in it.

In MDA terms, we could say that an OLIVANOVA Transformation Engine is the implementation 
of a tool that operates PIM-to-PSM transformations and PSM-to-Text (code) transformations.

Compiling OO-Method Models with OLIVANOVA Transformation Engines

Once the analyst has a version of the OO-Method conceptual model ready for implementation,  
s/he then moves on to choose the set of model compilers that automate that implementation task. 
Currently, OLIVANOVA Model Execution targets three-layered architectures (the presentation 
layer, the business logic layer, and the persistence layer) offering transformation engines that al-
low the compilation of an OO-Method conceptual model to (among others):

•	 JSP, ASP.Net, Visual Basic, and C# for the presentation layer,
•	 EJB, Visual Basic, and C# for the business logic layer, and
•	 SQLServer, Access, MySQL, Oracle, and DB2 for the persistence layer.

If, for instance, the analyst decides to have her/his model implemented in JSP for the presenta-
tion layer and EJB for the business logic layer using a MySQL database for persistence, then s/he 

Table 11.1

Functional Model in OO-Method

Attribute Event Valuation effect

InvoicePaymentDate pay paymentDate
IsPaid pay true
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would choose to use the JSP Transformation Engine and the EJB Transformation Engine using 
MySQL as database.

The JSP Transformation Engine, for instance, would transform each element in the presentation 
model view to its corresponding element in the JSP application model (such as JSP pages, servlets, 
validation scripts, etc.) and then each element in the JSP application model into the corresponding 
text (HTML, JavaScript, etc.).

If the analyst decides to target another platform (i.e., ASP.Net for the presentation layer, C# 
in the business logic layer, and SQLServer database for persistence) since her/his OO-Method 
conceptual model is truly platform-independent, s/he would only need to “recompile” her/his 
model again with the appropriate set of OLIVANOVA Transformation Engines (namely, the ASP.
Net Transformation Engine and the C# Business Logic Transformation Engine using SQLServer 
as database) without making any change or modification to it.

CONCLUSIONS

Even though researchers have been talking about the “crisis of software” for the past few decades, 
producing an information system today is still a costly process (expensive resources are used over 
extended periods), much too slow for modern business conditions, very risky (hard to control, and 
with a high failure rate), and highly unsafe (due to the many hidden failure points). Considering 
that the software development process has not changed much in the past forty years and that it 
has basically centered on the idea of programming, it is time to consider whether there might not 
be a better way.

In line with the modern approaches based on MDA, Extreme Non-programming, Conceptual 
Schema-Centered Development, and the like, we have presented a method (the OO-Method) with 
a supporting set of tools (OLIVANOVA Model Execution) that is based on a different “concept”: 
the idea that “the model is the code” instead of the conventional, programming-based idea where 
“the code is the model.” This new framework provides a computer-aided software development 
environment that is designed to deal with information systems development through the required 
processes of model transformation.

Specifically, we have shown how to build a precise conceptual schema and how to convert it 
into its corresponding software product by defining the mappings between conceptual primitives 
and their software representation counterparts. These mappings are the core of a model compiler 
that makes the following statement a reality: “to develop an information system, it is necessary 
and sufficient to define its conceptual schema.” The automation of systems building then becomes 
an affordable dream that is waiting for tools (such as the ones presented in this chapter) to justify 
its adoption in practice.
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